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ABSTRACT 

           Quantization techniques have been extensively employed to decrease on-chip storage and increase computation speed in 

response to the growing need to deploy Deep Neural Network (DNN) inference models on edge devices with constrained 

resources. Existing DNN quantization- tion work that uses quantization below 8 bits may, however, see either a 

noticeable drop in accuracy or a sizable chasm between the theoretical gain in computing throughput and the practical 

increase in inference speed. To quantize and accelerate numerous DNN models across various embedded FPGA devices, 

we present a generic framework here dubbed FILM-QNN. To begin, we suggest a new approach for intra-layer mixed-

precision quantization, in which the filters of various layers have varying degrees of accuracy. Based on our empirical 

research, we have identified the candidate precision levels and assignment granularity that will maintain accuracy while 

maximizing hardware parallelism. Second, in order to maximize throughput with the given resources, we use a number 

of optimization strategies for the FPGA accelerator design in favor of quantized computations. These strategies include 

DSP packing, weight reordering, and data packing. To further expedite the calculations with mixed precisions inside each 

layer, a complete resource model is built to balance the allocation of FPGA compute resources (LUTs and DSPs) as well 

as data transport and on-chip storage resources (BRAMs). Finally, we use Vivado High-Level Synthesis (HLS) on Xilinx 

PYNQ-Z2 and ZCU102 FPGA boards to make FILM-QNN more portable. Our experimental results on ResNet-18, 

ResNet-50, and MobileNet-V2 show that mixed-precision intra-layer implementations (95% 4-bit weights, 5% 8-bit 

weights, and all 5-bit activations) can achieve the same level of accuracy as the 8-bit (and 32-bit) versions, and the same 

level of throughput as the 4-bit designs (214.8 FPS, 109.1 FPS, and 537.9 FPS on ZCU102). 
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In light of DNNs' widespread success, the technology is being used more and more for inference on edge devices such 

embedded FPGAs and ASICs. Model compression is a crucial process for DNN acceleration on these edge devices due to the 

increasing number of parameters and calculations required by complex DNN designs. Model quantization is a key model 

compression technique that has been extensively studied at both the algorithm-level [2-4, 6-10, 12, 17, 18, 22-26, 29, 34, 36, 

39, 40, 44, 45, 49, 51, 54-56] and the hardware-level [5, 14-16, 20, 28, 30-32, 35, 42, 43, 48, 52]. Unfortunately, not many 

research have focused on improving hardware computation performance while still maintaining model correctness. However, 

several earlier works [6, 7, 18, 24, 25, 36, 56] have shown that low-precision (below 8 bits) quantization, such as binary, 

ternary, and 4-bit fixed-point quantization, may achieve high throughput. However, the drop in accuracy of their models 

becomes significant. However, a number of studies [7, 20, 24, 36, 56] inter-layer mixed-precision quantization, in which various 

layers are assigned different precisions, is an effort to reduce the accuracy loss. However, this results in poor hardware efficiency due to the 

fact that several inference layers now call for unique sets of resources and run in order. On an FPGA platform, for instance, the higher-

precision first and final DNN layers would mostly use DSPs, whereas the lower-precision intermediate DNN levels would primarily use. 

Using look-up tables (LUTs) might result in less precise results. This means that either DSPs or LUTs are sitting idly by while a 

single DNN layer is being executed. We develop a generic and resource-efficient FPGA acceleration framework for Intra-Layer, Mixed-
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Precision Quantized Deep Neural Networks (DNNs) called FILM-QNN, which allows us to simultaneously increase the inference 

throughput and the model's accuracy. Based on the observation that computations with different precisions within a layer run 

simultaneously, mixed-precision quantization (i.e., mixing higher preci- sion and lower precision within each layer) has the potential to not 

only preserve the model accuracy but also better utilize all types of FPGA resources for concurrent computations. 

First, we propose the FILM-QNN, an intra-layer mixed-precision quantization algorithm that uses a combination of low-precision (e.g., 95% of 

4-bit) weights, high-precision (e.g., 5% of 8-bit) weights, and moderate-precision (e.g., 5-bit) activations in each layer. During the DNN 

training process, we give weights with varying degrees of accuracy at the filter granularity in order to offer sufficient hardware par- allelism, 

with a focus on assigning high precision to weights that might cause large quantization errors. We also use different optimization strategies for 

quantized calculations in order to increase the computation throughput, and we pipeline the accelerator with parallelization along the input 

channel and output filter dimensions in the FPGA accelerator architecture. By efficiently packing multiple low-precision operations into a 

single DSP, 2) weight reordering arranges weights with the same precision together in each tile to eliminate the indexing overhead, and 3) data 

packing efficiently packs multiple low-precision weights (or activations) to widen their data width, saving on-chip storage and enhancing data 

access parallelism. Finally, we construct a thorough model to investigate the FPGA's resource allocation, which includes computing resources 

like DSPs and LUTs, and on-chip memory like Block RAMs (BRAMs), to speed up the calculations with varying degrees of accuracy in 

parallel for maximum throughput. 

We have built FILM-QNN using Xilinx Vivado HLS and tested it with ResNet-18, ResNet-50, and MobileNet-V2 models on two embedded 

FPGA boards (Xilinx PYNQ-Z2 and ZCU102) to show how portable it is. Our optimized implementations with 95% 4-bit and 5% 8-bit intra-

layer, mixed-precision quantization achieve accuracy of 70.47 percent, 77.25%, and 65.67 percent for the three models, respectively, and 

throughput of 27.8 frames per second on the PYNQ-Z2, 13.3 frames per second on the ZCU102, and 537.9 frames per second on the ZCU102, 

respectively, on par with the pure 4-bit precision designs. 

 

1 RELATED WORK 

 

1.1 DNN Model Quantization 

Accelerating DNN inference on edge devices, including embedded FPGAs and ASICs, requires the use of model quantization. The 8-bit 

quantization that can produce almost the same inference accuracy as 32-bit floating-point based DNN models has already been extensively utilized 

by industry. In this article, we focus on quantization methods with less than 8 bits of accuracy. 

Uniform Extremely Low-Precision Quantization, Version 1.1.1. Binary and ternary quantization, where each network value only needs one or two 

bits, are the most common forms of uniform very low-precision quantization. 

 In binary quantization, a single bit represents a value of 1. Binaryconnect [6], Bina- rized Neural Network (BNN) [7], XNOR-net 

[36], and ABC-Net [25] are other illustrative works. In contrast, zero is used as an additional quantization level in ternary 

quantization in TWN [24], TTQ [56], and [18], where two bits represent values of 1, 0, 1. The problem with these uniform low-

precision quantization approaches is that they lose a lot of accuracy at > 5% (in the case of binary quantization) and 2%-3% (in the 

case of ternary quantization). Mixed-Precision Quantization Across Layers. To preserve model fidelity in prior work 

using low-precision quantization [6, 17, 18, 37], it is typical to leave the first and final layer unquantized or to 

quantize them with no less than 8 bits. To further enhance the quantization accuracy, further research [8, 9, 39, 40, 

44, 45, 49] investigated inter-layer, mixed-precision quantization techniques. Layer-wise precision assignment of 

weights and activations generates a large search space that has been explored using a variety of approaches and 

algorithms, including as HAQ [44], DNAS [45], and Mixed Precision DNNs [40]. More bits are allocated to layers 

that are sensitive to quantization errors via the HAWQ [9], HAWQ-V2 [8], PyHessian [49], and Q-BERT [39] 

algorithms, which solve Hessian matrices to determine the optimal bit- width assignment of each layer. As 

discussed in Section 1 and analyzed in Section 4, poor hardware efficiency is a potential drawback of inter-layer, 

mixed-precision quantization. Mixed-Precision Quantization Within a Single Layer. Intra-layer mixed-precision quantization, which 

allows for varied precisions or schemes inside each layer, has been the subject of numerous studies [26, 34] that further elaborate on the notion of 

mixed-precision quantization. In order to improve model accuracy, RVQuant [34] suggests value-aware quantization, which uses low-precision 

quantization solely for sparse data in weights and activations. When compared to uniform low-precision quantization, it is not possible to achieve 

significantly faster inference times. AutoQ [26] uses reinforcement learning, which is computationally costly, to calculate the quantization 

accuracy within the kernel level. 

In this study, we investigate the possibilities of intra-layer, mixed-precision quantization to boost hardware efficiency. Unlike previous research, 

we aim to maintain model correctness while simultaneously increasing inference throughput. Quantized DNNs Boosted with FPGAs 

Bit-level flexibility is increased in ASIC designs thanks to dynamic quantization with bit fusion [38] and striped bit-serial units [21], both of which 

are used to accommodate varying bit-widths in deep neural network layers. Model quant- tization is another technique that has found widespread 

use in DNN FPGA implementations [14]. The majority of the literature is dedicated to binary quantization, with calculations o f binarized weights 

and activations being carried out using XNOR gates [16, 30, 31, 41, 53]. While the first convolutional layer keeps its 8-bit input, the work in [20] 

uses a two-stage arithmetic unit implemented by LUTs for 2-bit quantization. Using LUTs for shift-accumulation operations, [28] explores the use 

of power-of-two (PoT) quantized models. Various methods, such as the mixed-precision quantization presented in [43] for inter-layer

1-bit, 2-bit, 4-bit, and 8-bit weights, software-hardware co-design for 1-bit weights and 4-bit activations [48], a greedy approach [15] to 
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find the radix location of each layer, and automated production of RTL DNN components [52] for higher precision (8 and 16 bits). The bit-

width of DNNs is not a restriction for the OpenCL-based deep learning accelerator described in [5]. 

To boost inference throughput without sacrificing model correctness, our work is unique in its emphasis on FPGA acceleration of DNNs 

using intra-layer, mixed-precision quantization. This is crucial since mapping the whole model (i.e. all layers) of big DNNs for on-chip 

processing concurrently is sometimes not achievable. While we utilize mixed-precision (high and low bit-width) quantization inside each 

layer, the closest work to ours is in [2], which uses mixed quantization methods (fixed-point and power-of-two quantizations). Additionally, 

in this work, we use a number of optimization strategies for low-precision computations on FPGAs and provide a thorough model to 

equilibrium the FPGA resource allocation. In Section 4.4, we'll show you how we stacked up numerically against [2]. 

High computing performance in FPGA implementations requires not just model quantization but also well-balanced use of available 

resources. For instance, to optimize performance for DNN designs with 16-bit fixed-point accuracy, a design space exploration tool is 

described in [35] to explore architectural options with different resource allocation of DSPs, on-chip memory, and off-chip bandwidth. The 

calculation for quantization bit-widths below 11, however, is always done in LUTs due to a lack of study for the LUT utilization. As a 

consequence, DSPs on FPGAs would be underutilized if used with quantization models of low precision (i.e., fewer than 8 bits). We 

simulate the calculation using LUTs and DSPs (and on-chip memory and off-chip bandwidth) with the intention of equitably distributing 

resources among various levels of accuracy while making full use of all available resources. In addition, we use the DSP packing approach 

described in [32, 42, 46, 47] to get the most out of digital signal processors. low-precision calculation efficiency.PROPOSED FILM-QNN 

FRAMEWORK 

 

1.2 Accurate and Hardware-Friendly 
 
Intra-Layer, Mixed-Precision Quantization 

quantization on a scale proportional to the bit width. Due to its greater accuracy performance, 8-bit quantization may be used as the 

high bit-width one in this case. This is why, even with uniform low bit-width quantiza- tion techniques [3, 4, 10, 12, 17, 22, 55], the 

first and final layers are always quantized to at least 8 bits, if not left unquantized altogether. We base our innovative intra-layer, 

mixed-precision quantization on the aforementioned findings. In order to maintain accuracy and decrease execution cost throughout 

the layer-by-layer inference computations, we suggest combining low and high bit-width quantization within layers and at an 

appropriate granularity. It's important to keep in mind that it's usually not feasible to transfer the whole model of big DNNs onto an 

FPGA and run all layers concurrently. To guarantee hardware parallelism, we fine-tuned the granularity of intra-layer quantization 

assignment to the filter level. To further ensure accuracy, we utilize a modest bit-width quantization for all activations throughout the 

whole DNN model. 

In conclusion, our empirical analysis (with findings shown in Section 4.2) shows that, for our intra-layer, mixed-precision 

quantization technique, we use a total of three precision levels: To maintain accuracy and reduce execution overhead for infe rence 

acceleration, we use (I) low bit-width (4-bit) for the majority of the filters in a layer, (II) high bit-width (8-bit) for R = 5% of the 

filters in a layer, and (III) a moderate bit-width (5-bit) for all the activations throughout the model. In Section 4.2, we'll look at how 

changing the R value (the fraction of high-bit-width filters) affects the precision. To meet the aforementioned bit-width restrictions 

(I), (II), and (III), we quantize the model using a unique intra-layer, mixed-precision quan- tization strategy, as shown in Algorithm 1. 

We propose computing the quantization error E as a means of assigning accuracy to the filters (rows) of the weight tensor (matrix) of 

each convolutional (fully-connected) layer. Algorithm 1 combines the suggested precision assignment procedure with the 

quantization-aware Straight Through Estimator (STE) [1, 2]. The following are the specifics of our methodology.  

For example, think of a deep neural network (DNN) of L layers. In this context, Wl stands for the weight tensor (matrix) of the l th 

layer. Al stands for the l th layer being active. In the weight tensor (matrix) Wl, the k-th filter (row) is denoted by Wk. The quantized 

weight and activation values in m-bit fixed-point quantization come from 1 2 To maintain the precision of quantized models and 

speed up inference, researchers have looked at mixed-precision quantization. However, the layer-by-layer inference execution on 

hardware platforms is incompatible with the current inter-layer techniques [8, 9, 39, 40, 44, 45, 49] because they assign various 

precisions to the DNN's layers. However, the current intra-layer methods [26, 34] use In this equation, V(m) is given by (1)where is a scaling factor: 

V(m) = 0, 2m1 1, 2m1 1,. Activation quantization uses a fixed value connected to the dataset, whereas weight quantization uses a number determined as the greatest absolute 

value of all weights in each layer. When converting from a floating-point to a fixed-point representation, the quantizer function is written as 

DNN inference requires a more granular level of accuracy for assignment inside layers, which increases the execution cost. As 

a result, there is a significant chasm between the (theoretical) decrease in computation quantity and the (actual) increase in 

inference speed. 

The following findings inspired us to develop our method of intra-layer mixed-precision quantization: 1) It's well knowledge 

that 8-bit quantized inference models can reliably maintain the same level of precision as full-precision models [13]. 2) When 

combined with a high-bit-width mixer, the accuracy loss brought on by low-bit-width quantization may be reduced. 

 

 
1   Convolution(�, � , �) { 
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� 

← ; 

� � 

� � 

2 for (�� = 1 : �� , �� = 1 : �� ) // kernel 

3 L1: for (�� = 1 : �� , �� = 1 : �� ) { // feature map 

4  #PIPELINE II=1 

5 L2: for (�� = 1 : ��) { // filter 

6 #UNROLL 

7 L3: for (�� = 1 : �� ) { // input channel 

8 #UNROLL 

9 � [� ] [�� ] [�� ]  + = 

// assign quantization precision for each filter in the layer 

6 foreach filter W  in W�  do 
7 Ŵ   ← QHb (W� ) if quan_error�  belongs to the 

10 � [� ] [�� ] [�� ] [�� ] × � [�� ] [�� × �� + �� ] [�� × �� + �� ]; 

11 
 

 

top � (5%) group; 
8 Ŵ   ← QLb (W� ) otherwise; 

shortcut connection). For FILM-QNN, we introduce the extra opti- mizations for quantized computations in this subsection, including 
� � 

9 A  ← Ŵ 
�  · Â 

� −1 ; 

// activations are quantized in Moderate 
bit-width 

10 Â 
  ← QMb (A� ) ; 

// backward propagation 

11 foreach layer � (reverse order) do 
12 ����� ← ���� ; 

DSP packing, weight reordering, and data packing. 

Base FPGA Accelerator. Without loss of generality, we use the most computation-intensive convolutional layer to demonstrate our 

FPGA design details. Given the limited FPGA resources, we apply the commonly used tiling technique in the accelerator imple- 

mentation, where the accelerator only computes for a single tile of input feature maps, weight kernels, and output feature maps from 
�W� 

  ����� 
������� 

 ˆ ˆ 
����� 

Â 
� −1 

a layer at a time. Algorithm 2 provides the pseudo code of the tiled convolution accelerator design. Details are explained as follows. 

14  Return M ← M{W}.  

We use �� (� ), �� (�� ), � �� (� �� ), �� (�� ) and �� (�� ) to denote 

}}}} 

13 

[$] [11] [10] [9] [8] [7] [6] [5] [4] [3] [2] [1] [0]  [$] [11] [10] [9] [8] [7] [6] [5] [4] [3] [2] [1] [0] 
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� 

∥ · ∥ 

� � � � 

(c) 
W1 

A 

W2 

D 

X2 X1 

B 

P 
X2W2 X1W2 X2W1 X1W1 

× 

 
We propose the quantization error of a filter W  as: 

E
 
W , Ŵ �   = ∥W�  · Â 

� −1  − Ŵ �  · Â 
� −1 ∥2 (4) 

 
the Tiled convolution technique dimensions and explanations are shown in Table 1. During processing, the tiled input feature maps and 

weights are loaded in a burst fashion from off-chip memory into on-chip Block RAM (BRAM) buffers. 

  

The number 2 denotes the standard for Language Level 2. The quantization error is the ratio of the full-precision filter's output feature maps 

to the quantized filter's output feature maps. The quantization errors of each filter in a layer are calculated as though they were quantized 

with a low bit-width (lines#4&5) in order to determine their respective levels of accuracy. High bit-width quantization is used for filters 

whose quantization errors fall within the top R (e.g., 5%) group; low bit-width quantization is used for all other filters (lines #6 and #8). 

Lines 4 and 8 of Algorithm 1 show how our accuracy assignment process is embedded into the STE technique, which employs rounded 

weights/activations in forward propagation and addresses the unavailable gradient problem in backward propagation by making the 

derivative of the rounding function equal to 1. 

 

FPGA Accelerator Design and Optimization Our base FPGA accelerator design is similar to [50] with the sup- port of various types of 

DNN layers including convolutional layer, fully-connected layer, batch normalization layer, activation (ReLU) layer, and pooling layer, as 

well as skip connection (namely identity  corresponding output feature maps. Lastly, the output tile data on 

BRAM is written back to the off-chip memory in a burst mode. 

Inside the tiled convolution procedure (Algorithm 2), Loop L1 is pipelined with initial interval (II) of 1 to achieve computation 

parallelism of �� �� in Loops L2 (filter, or output channel di- mension) and L3 (input channel dimension). The buffered tiles (in BRAMs) 

are partitioned in the corresponding dimensions to sup- port the parallelism: the input tile � is completely partitioned along the first 

dimension (input channel dimension), the output tile � is completely partitioned along the first dimension (filter dimension), and the weight 

tile � is completely partitioned along the first and second dimensions (both filter and input channel dimensions). In addition, double 

buffering is applied to pipelining the following stages: loading input and weight tiles, computing the convolution, and storing the output tile. 

DSP Packing for Multiple Quantized Multiplications. In order to make the most of the DSP resources available on FPGAs, we stack many 

 

 

 

 

 

 

 

 

 

 

 

 

 
[$] [7] [6] [5] [4] [3] [2] [1] [0]  [$] [7] [6] [5] [4] [3] [2] [1] [0]  [$] [7] [6] [5] [4] [3] [2] [1] [0]  [$] [7] [6] [5] [4] [3] [2] [1] [0] 

 

Figure 1: Multiple quantized multiplications supported on a single DSP48E1. (a) The 25 × 18-bit multiplication supported on 
DSP48E1; (b) Two 8 × 5-bit multiplications packed on DSP48E1; and (c) Four 4 × 5-bit multiplications packed on DSP48E1. 

 

 

where 
convolution procedure (Algorithm 2), which computes the tile of 

(a) 
 

A 

25-bit 

D 

       P 

B 18-bit 

(b) 
X2 X1 

A 

W 

B 

P 
X2W X1W 

[4] [
3
] 

[2] [1] [0]  [4] [3] [2] [1] [0] 

 

[$] [$] [$] [$] [$] [$] [$] [$] [$] [$] [$] [$] [$] [$] [$] [$] [$] [$] [$] [$] [$] [$] [2] [1] [0] 

 
[$] [$] [2] [1] [0] 

 
[4] [3] [2] [1] [0]  [4] [3] [2] [1] [0] 
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Table 1: Notations used in FILM-Q Opera 

 

nd �, occupying the bits 4 : 0 and 18 : 14 , and one 8-bit signed weight � is presented in the 18-bit operand � occupying its bits 7 : 0 , 

where [$] denotes the sign of the weight. The two 13-bit multiplication results can be extracted from the bits 12 : 0 and 26 : 14 , 

respectively, in the 43-bit product � of the DSP. The bit 13 in the product � is reserved for overflow. To reduce the LUT consumption for 

additions, only lower bits of these operands and output are occupied. 

 

Two low-accuracy multiplications inside each DSP are given using 4-bit signed weights W1 and W2 in line with [46, 47] so that four 45 

multiplications may be packed into a DSP48E1, as illustrated in Fig. 1(c). One 25 18-bit multiplication (and one 25-bit addition) is possible 

on the DSPs on the PYNQ-Z2 board, but on the ZCU102 board, one 27 18-bit multiplication is possible on the DSPs. We'll utilize the 

DSP48E1 (25 18-bit) to demonstrate our DSP packing technique. In our FILM-QNN, we employ weight precisions of 4, 8, and 5, and 

activation precisions of 5. For this, support for 4-bit and 8-bit multiplications is required. The computation P = A D B, where A and D are 

25-bit operands, B is an 18-bit operand, and P is the 43-bit result, may be performed by a DSP48E1, as shown in Fig. 1(a). As shown in 

Figure 1(b) and Figure 1(c), a DSP48E1 can do two 8-bit 5-bit multiplications or four 4-bit 5-bit multiplications. Figure 1(b) shows how a 

DSP48E1 can fit the equivalent of two 8-bit 5-bit multiplications. The activations of X1 and X2 are shown as 25-bit representations. 

The weights' sign bits are appropriately extended and carried by bits 4:0 of operand A and bits 23:20 of operand D, while bits 4:0 and 14:10 

of operand B provide two 5-bit activations X1 and X2 to the weights. The product P of the 43 bits used by the DSP is 9 bits for bits 8:0, 

18:10, 28:20, and 38:30. The same way, one extra bit is saved between the four final outputs in case of overflow. 

While we demonstrate DSP packaging on Xilinx FPGAs, similar approaches might be applied with Intel FPGAs, which have either 18 or 

27 fixed-point DSPs with a bit depth of 18 or 27. [19]. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Weight Reordering to Reduce Indexing Overhead. To decide which (output) filters in a layer should be assigned 8-bit quantization, we use 

an intra-layer, mixed-precision quantization technique. The R = 5% of High-bit (8-bit) filters, however, may be unevenly spread throughout 

the whole layer, as seen in Fig. 2's left side. Since distinct compute engines handle the 4-bit and 8-bit calculations independently (and 

simultaneously), the (random) indexing overhead to access the 8-bit and 4-bit filters in these compute engines may arise. We suggest the 

weight reordering method seen in Fig. 2 to lessen this indexing burden. Let's suppose a layer contains M filters in total, and those filters are 

spread out among Tm weight tiles. We rearrange the filter ordering for each weight tile such that the first R Tm filters are kept for the 8-bit 

quantized ones and the remainder of the filters in the tile are for the 4-bit quantized ones. The filters in this layer are rearranged to match the  

               ilter 1Filter 2Filter 3Filter 6Filter 7Filter 8Filter 

Weight Tensor Before Reordering4b 8b 4b 4b 4b 8b 4b 8b 
 

 
4b 

Weight Tile After Reordering 

 
8b 8b 8b 

 

 
4b 4b 4b 4b 4bFilter 2 

Filter 7 

Filter 8 

 

 
Filter 1 

Filter 3 
 

120 
 

100 
 

80 
 

 

Filter 7 
             140 
 

Notation 

�� (�� ) 

Description 

Tiling size in output (input) channel 

dimension 

[$] [6] [
5
] 

[4] [3] [2] [1] [0] 

 

 

�� (�� ) Tiling size in output feature height (width) dimension 

� �� (� �� ) � � Tiling size in input feature height (width) dimension 

�� (�� ) Kernel size in height (width) dimension 

�� (�� ) Stride in height (width) dimension 

�
4×5,��� 
��� 

(�
8×5,��� 

)
 

��� 

Number of LUT used by a 4 × 5-bit (or 8 × 5-bit) 
multiplication executed on DSPs 

�4×5 (�8×5) 
���      ��� 

Number of DSP (LUT) used by multiplications 

executed on DSPs (LUTs) 

� Number of low-bit data packed together 

� 4×5 (� 8×5) 
��� ��� 

Number 4 × 5-bit (8 × 5-bit) multiplications 
executed on DSPs (LUTs) 

����  (���� , ��� �� ) Available number of DSPs (LUTs, BRAMs) 

����  (���� ) DSP (LUT) utilization threshold 

���  (���� , ���� ) Number of BRAMs used by input (output, weight) tile 

���  (���� , ���� ) 
Number of AXI ports used for data transfer of 

input (output, weight) tile 

�����  (���� , ��� ) 
Number of computation (weight transfer, input 

transfer) cycles for one group of tiles 

���� � Size of one AXI port on FPGA 
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180 

 

100 

size of �� × �� × �� . 

3.3 The indexing cost for sequentially linked layers is removed by using this weight reordering strategy at 

compilation time before to conducting the DNN inference on hardware. DSPs provide for an 8-by-5-bit 

resolution. 20 0 800 1600 2400 3200 

3.4 Simplicity (b)8 x 5 bits with look-up tables. 

3.5 \ However, the filters in la and lb may be modified otherwise in the case of skip-connected layers. Loading 

activation outputs from layer la and layer lb for addition may cause layer lb's filter order to be out of sync 

with layer la's, but this may be avoided by preserving layer la's filter order relative to that of the reordered 

layer lb and then reloading the layers with the appropriate filter order. The indexing overhead for ResNet-18 

was reduced from 67.97 kbit to 27.75 kbit (2.45), for ResNet-50 it was reduced from 323.0 kbit to 198.8 kbit 

(1.62), and for MobileNet-V2 it was reduced from 211.6 kbit to 9.28 kbit (22.8) by modifying the filter weights 

in each layer.In order to achieve data compression and parallelization, information packing is used. The low-

precision data access in FILM-QNN (i.e., 4-bit and 8-bit for weights, and 5-bit for activations) may lead to 

under-utilization of BRAM capacity and over-use of the BRAM banks (for parallel port access) due to the 

much greater bit-width of a BRAM bank (18k bits). In order to decrease the amount of on-chip BRAM 

required and boost the parallelism of the hardware's data access, we use the data packing technique to 

merge several low-precision data items into a single big data item. The ideal data packing size, G, is 

determined by the processing speed and storage capacity of a certain FPGA board. Up to the limit of BRAM's 

relatively tiny bit width, this increases the on-chip bandwidth by a factor of G. The effective off-chip memory 

band-width is enhanced by a factor of G [27], thanks to the 64-bit width of the PYNQ-Z2 board and the 128-

bit width of the ZCU102 board's off-chip memory access ports. Don't forget that Intel FPGAs might benefit 

from this data-packing method as well. 

3.6 Input and output tiles' G channels' 5-bit activation values are combined into a single value. Tile I's values 

have been transformed from their original 5-bit Tn T in T in format into 5-bit Tn G T in T in information. 

Similar information to Tm G Tr Tc may be found in Tile O of the 5 G-bit output. For the W input channel, a 

lot of data is jammed in there. By combining each pair of 4-bit weights together, the buffer can store 8 bits of 

information when T wgt = Tm 2 1 R. It is easy to get the subset of packed data that is required for 

computations by using shifting and AND operations. 
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3.7  Figure 3: LUTs using ZCU102 parallelism. 

           

          1.2.1In (a) and (b), digital signal processors multiply 8 bits by 5 bits, while in (c) and (d), lookup tables 

do the same.Additional Layer Processing. It is possible that the hardware implementation of DNNs will 

allow the convolutional and fully-connected layers to share the processing kernel for matrix multiplication 

operations. Compared to matrix multiplication, the DNN operations of batch normalization, activation 

(ReLU), pooling, and skip connection (addition processes) are much more computationally efficient. These 

steps are executed before to saving the output buffers' results, therefore their impact on latency is negligible. 

The floating-point accuracy of a model's parameters is maintained during quantization via a batch 

normalization layer. The hardware implementation of batch normalization combines the weights and biases 

with the running mean and running variance parameters. The weights and biases of the relevant batch 

normalization layer (8-bit or 16-bit precision) are combined with the scaling factor in each convolutional 

layer (given in equation (1)) to preserve model integrity. In the presence of a skip connection, the results of 

this batch normalization layer and a preceding ReLU layer would be mixed. An optional pooling layer may 

be included between each comparison-performing ReLU layer to quantize the activation values. This means 

that the accuracy hit from representing the activation values using 5-bit integers is rather small. 

3.8 FPGA Resource Allocation Modeling 

Our current baseline FPGA accelerator design for quantized DNN models might benefit from further optimization of computation 

parallelism making use of available computational resources (i.e. DSPs and LUTs), on-chip memory (i.e. BRAM), and memory 

bandwidth. Even with specified computing resources (for example, DSPs or LUTs), we have trouble estimating how much the LUT will 

cost for a certain computation type (for example, 4 5-bit or 8 5-bit multiplication). What this entails 

  

First, we'll go through how LUTs are used in each of the four examples presented in Fig. 3. 

𝑑𝑠𝑝As an example, consider (a) 4-by-5-bit multiplications using DSPs, (b) 4-by-5-bit multiplications using LUTs, and (c) 4-by-5-bit 

multiplications using both DSPs and LUTs. Since the slopes of the fitted lines equal 4 5 (C45 C45,dsp)Sdspdsp + C45 Slut lut (10), we 

can use these values to get the  

 

LUT cost for 

 
� 8×5 =𝑑𝑠𝑝a 4 × 5-bit multiplication executed on DSPs or LUTs, denoted by��� 𝑞𝐶4×5𝐶4× 𝐶4 𝐶8×54×5,𝑑𝑠𝑝4×58×5,𝑑𝑠𝑝8×5 𝑙𝑢𝑡𝑑𝑠𝑝𝑙𝑢or 𝐶 . Similarly, we also derive 𝐶 , and 𝐶 . 
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� 
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where � = (1 − �)/�. The solution is then expressed as 

off-chip data transfer or on-chip memory resources. 

 

off-chip data transfer or on-chip memory resources. 

consumes 
 

𝑞𝐶4×5𝐶4×5   + 𝐶8×5𝐶4×5like accumulation. Next, we use a convolutional layer to show the 
details of our FPGA resource modeling and optimization, including the analysis on computing resources as well as 
off-chip data transfez and on-chip memory 
 
 
Computation Resource Analysis. From the computation re- Off-chip Data Transfer and On-chip Memory Analysis. During  the inference 
execution of the FPGA accelerator, weight need 

 

to be transferred through burst access from the off-chip DRAM memory to the on-chip BRAM buffers. The 

transferred tiles include input tile with size �� ×� �� ×� �� , output tile with size �� ×�� ×� 
�� ,�� ,��� ,���� 

𝑙𝑢𝑡 
𝑙𝑢𝑡 
 

𝑁 8  

� 8×5 + � 8×5  + � 4×5 + � 4×5  
≥ �. (8) 

� =   /� · ⌈�  · �  · 5 · � /18k⌉ 
 (14) 

The above constraints (6) and (7) ensure the DSP and LUT uti- 
lization is under the allowable threshold, i.e., ���� and ���� with the total resource amounts denoted by ���� and ���� . And the con- straint (8) 

makes sure we have no less than � = 5% for 8 5-bit multiplications. Depending on the characteristics of the target FPGA device, the final 

solution may converge to one of the four boundary conditions, which is determined by the output combination of two 

factors: 1) whether the 8 5-bit multiplications can be more effi- ciently processed on DSPs or LUTs on FPGAs; and 2) whether the 

available DSP (or LUT) resources are sufficient to handle those 8 
5-bit multiplications. For each of these four boundary conditions, 
 
the situation is described when one of the four parameters (� 8×5, 

���� = ��/2 · (1 + �) · �� /� · ⌈�  · ��  · 8 · � /18k⌉ 

where the BRAM block size of 18Kb is used and the BRAM usage for each buffer rounds up to the nearest whole number ( ). Also note that the 

double buffering technique is used to overlap computations with off-chip memory accesses. 

Constraint (13) is on off-chip data transfer, where ���� , ���� and ��� are the number of computation cycles, weight transfer cycles, 

and input transfer cycles for one group of tiles, respectively. The output buffer transfer cycles are negligible and thus not in- cluded. ���� , 

����  and ���  are obtained as 

�����  = ��  · ��  · ��  · �� 
��� 

� 4×5, � 8×5, and � 4×5) is zero. The solution process for these four 
boundary conditions is similar. Due to space limitation, here we ���� 

 
= 

𝑇𝑚 · 𝑇𝑛 · 𝐾𝑟 · 𝐾𝑐 · (8 · 𝑅 + 4 · (1 − 𝑅)) 

𝑝𝑤𝑔𝑡  · 𝑆𝑝𝑜𝑟 𝑡 
𝑇𝑛 · 𝑇 𝑖𝑛 · 𝑇 𝑖𝑛 · 5 
 (15) 

only present the solution for the case where the 8 × 5-bit multi- 
𝐶𝑖𝑛 = 
𝑟 𝑐 

plication is more efficiently processed on LUTs than on DSPs, and 

the available LUT resources are sufficient to handle those 8    5-bit multiplications, i.e., 

𝑝𝑖𝑛 · 𝑆𝑝𝑜𝑟 𝑡 

Where 𝑆𝑝𝑜𝑟𝑡 denotes the bit-width of one AXI port. 
3.3.1 Summary. Ideally, we need to jointly solve both problems. 

 4 𝐶4×5 𝐶4×5  − 𝐶4×5,𝑑𝑠 𝑝 

(5) and (11) for optimized FPGA resource allocation. In fact, we 

 
   𝑙𝑢𝑡 𝑙𝑢𝑡  

𝐶8×5  − 𝐶8×5,𝑑𝑠 𝑝 

find that we only need to solve problem (5) and then check with 

  𝑆𝑑𝑠𝑝 · 𝛾𝑑𝑠𝑝 

 𝑞 · 𝑆𝑙𝑢𝑡 · 𝛾𝑙𝑢𝑡 
4 5 
𝑑𝑠𝑝  

           ≤ 
𝑞 · 𝐶4×5,𝑠 𝑝  + 𝐶8×5 

Provides a higher parallelism result for most of FPGAs. That is, the 

achievable parallelism degree in our quantized DNNs is generally bounded by the available computation resources on FPGAs, not the 
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𝐶8×5  − 𝐶8×5,𝑑𝑠𝑝 

find that we only need to solve problem (5) and then check with 

  𝑆𝑑𝑠𝑝 · 𝛾𝑑𝑠𝑝 

 𝑞 · 𝑆𝑙𝑢𝑡 · 𝛾𝑙𝑢𝑡 
4 5 
𝑑𝑠𝑝  

≤ 
𝑞 · 𝐶4×5,𝑠 𝑝  + 𝐶8×5 

Provides a higher parallelism result for most of FPGAs. That is, the 

achievable parallelism degree in our quantized DNNs is generally bounded by the available computation resources on 

FPGAs, not the 

 

EVALUATION 

 

1.3 Experimental Setup 

1.4 Different sized DNN models, including ResNet-18, ResNet-50, and MobileNet-V2, were used in our studies, and both model 

quantization and hardware implementations were tested for each. We improve accuracy by retraining the baseline models with FP32 

precision, which we obtained by downloading them from the TorchVi- sion library [11]. Then, we apply intra-layer mixed-precision 

quantization to the weights, experimenting with a range of weight-to-activation bit depths (from 3 to 6 bits) and weight-to-activation 

bit-ratios (R = 0%, 3%, 5%, 10%, 20%, 100%). In the first 100 epochs, we find the 5% 8-bit filters, and in the next 50 epochs, we fine-

tune the model parameters while keeping the precision constant. 

1.5 ResNet-50 has an initial learning rate of 1.024, whereas ResNet-18 and MobileNet-V2 both start at 0.512. ResNet-50 has a batch size 

of 1024, whereas the other two models each have a batch size of 512. The models are trained using the SGD optimizer with the 

parameters momentum = 0.875 and weight decay = 1 32768. At the outset of the quanti- zation, 8 epochs of warmup training are 

executed, and label smoothing is applied at a factor of 0.1 in order to increase accuracy. According to NVIDIA [33], these are the 

optimal settings for learning how to classify images. Model quantization is executed on 8 GeForce RTX 2080 Ti GPUs running 

Ubuntu 18.04 with the CUDA 10.2 and PyTorch 1.5 frameworks. 

1.6 The quantized models are then tested on two distinct embedded FPGA platforms (Xilinx PYNQ-Z2; i.e., XC7Z020) and ZCU102 to 

show that our framework is applicable to a wide variety of FPGA boards. In comparison to the ZCU102 board's 2520 DSPs and 

274.1k LUTs, the PYNQ-Z2 board's total of 220 DSPs and 53.2k LUTs seems somewhat little. Working frequencies of 100 MHz for 

PYNQ-Z2 and 150 MHz for ZCU102 were chosen for all DNN models to provide maximum computation efficiency without time 

violation. On PYNQ-Z2, we use a data packing size of G = 6, whereas on ZCU102 we use G = 8. Xilinx Vivado 2020.1 is used for the 

high-level synthesis of the hardware designs. 

1.7 Accuracy Results 

We undertake verification tests using ResNet-18, as shown in Tables 2 and 3, to back up the empirical conclusions we reported in Section 
3.1. In the first row of the table, we see the precision of the unquantized baseline model from the TorchVision collection [11]. Our model, 
which we've fine-tuned to reach 70.78% and 89.94% in top-1 and top-5 accuracy, respectively, is included in the final row for comparison 
purposes given that the official supplied model may utilize different training settings. 

1.7.1 Accuracy Findings when R is a Mixed Ratio. Table 2 shows a comparison of the model's accuracy when the mixed ratio R is varied 
while the activation bit-width remains fixed at 5 bits. First, when R = 0% (all weights are 4-bit), the top-1 model accuracy is 69.63% and 
the top-5 model accuracy is 89.28%. In other words, the top-1 accuracy drops by more than 1% when using 4-bit quantization. Second, the 
top-1/top-5 accuracy is increased to 70.60%/89.83% when R equals 100%, i.e., when all weights utilize 8-bit, which is very close to the 
same as the fine-tuned full precision model. Third, the top-1 accuracy of the model reaches 70.01%, 70.47%, 70.45%, and 70.56% for R = 

3%, 5%, 10%, and 20%, respectively.Table 2: Comparisons of ResNet-18 model accuracy under different percentages of 8-bit 
weights on ImageNet dataset 

 

Quantization 

Method 

Weight 

Bit-width 

Activation 

Bit-width 

Top-1 

Accuracy 

Top-5 

Accuracy 

Baseline 32b 32b 69.57% 89.24% 

Retrain 32b 32b 70.78% 89.94% 

W4A5 4b 5b 69.63% 89.28% 

Mixed 97% 4b + 3% 8b 5b 70.01% 89.33% 

Mixed 95% 4b + 5% 8b 5b 70.47% 89.63% 

Mixed 90% 4b + 10% 8b 5b 70.45% 89.55% 

Mixed 80% 4b + 20% 8b 5b 70.56% 89.59% 

Mixed (Inter) 4b + 8b 5b 69.92% 89.37% 

W8A5 8b 5b 70.60% 89.83% 
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Table 3: Comparisons of ResNet-18 model accuracy under different bit-widths of activations on ImageNet dataset 

 

 
Baseline 32b 32b 69.57% 89.24% 

Retrain 

Mixed 

32b 
95% 4b + 5% 8b 

32b 

3b 

70.78% 
68.91% 

89.94% 
89.10% 

Mixed 95% 4b + 5% 8b 4b 69.98% 89.38% 

Mixed 95% 4b + 5% 8b 5b 70.47% 89.63% 

Mixed 95% 4b + 5% 8b 6b 70.51% 89.64% 

1.8 respectively, demonstrating that R = 5% may make effective use of the advantages offered by both greater precision and fewer bits' 

worth of weight. When R is increased by more than around 5 percentage points, there is no discernible gain in precision. To simplify 

the design of a single hardware accelerator that can be utilized by all layers, we use the same R = 5% value throughout. This already 

yields a very high degree of precision, as shown in Table 2. A little improved accuracy may be achieved by tuning a distinct R value 

for each layer, but this would result in inefficient hardware implementation that would be difficult to reuse. 

1.9 Comparison of Accuracy at Various Activation Bit-Widths (1.7.1). Table 3 displays our findings as we investigate the effect of 

activation bit-width. We evaluate the robustness of the model over a range of activation bit-widths, from 3 bits to 6 bits, while 

maintaining a mixed-weight precision of R = 5% throughout. The results demonstrate that the model's accuracy improves with 

increasing activation bit-width, albeit the rate of improvement slows with increasing activation bit-width. Top-1 / top-5 accuracy 

reaches 70.47 / 89.63 percent when the bit-width of activation is 5 bits, which is quite similar to the result obtained with 6-bit 

activation. Because of the hardware efficiency gains, we choose for 5-bit activations in our FPGA studies rather than 6-bit ones. 

1.10 To show that "5- bit activations and R = 5% 8-bit weights mixed with 4-bit weight" is a powerful combination, we just rely on the 

verification tests. one does not imply that one model is superior to others. It's important to note that our system works with any bit-

widths for weights and activations. The framework's accessibility is unaffected by a shift in the bit-width combination. 

Overall Throughput and Resource Results To better understand the performance of FILM-QNN, in Table 4, we compare its 

peak throughput and overall resource utilization on 

 

Table 4: Resource utilization and optimized computation throughput under different weight quantization precisions 

Quantization 

Precision 

Computation 

Resource 

Implementation on ZCU102 (150 MHz) Implementation on PYNQ-Z2 (100 MHz) 

Utilization W4A5 Opa W8A5 Op Peak Thrpt. 

(GOPS) 

Utilization W4A5 Op W8A5 Op Peak Thrpt. 

(GOPS) LUT DSP LUT DSP LUT DSP LUT DSP LUT DSP LUT DSP 
 

 LUT 78% 1% 10240 0 - - 1536 81% 13% 1728 0 - - 172.8 

100% W4 DSP 

LUT + DSP 51% 

68% 

82% 

78% 

0 

2048 

16384 

15360 

- 

- 

- 

- 

2458 

2611 

56% 

77% 

95% 

95% 

0 

576 

1440 

1440 

- 

- 

- 

- 

144 

201.6 
 LUT 76% 1% - - 6656 0 998.4 75% 13% - - 1152 0 115.2 

100% W8 DSP 

LUT + DSP 23% 

65% 

82% 

83% 

- 

- 

- 

- 

0 

3072 

8192 

8192 

1229 

1690 

31% 

75% 

95% 

95% 

- 

- 

- 

- 

0 

576 

720 

720 

72 

129.6 

95% W4 

+ 5% W8 

LUT 

DSP 

LUT + DSP 

76% 

54% 

66% 

2% 

83% 

83% 

8192 

0 

0 

0 

14336 

16384 

1024 

0 

1024 

0 

1024 

0 

1382 

2304 

2611 

81% 

49% 

78% 

13% 

95% 

95% 

1584 

0 

720 

0 

1152 

1152 

144 

0 

0 

0 

144 

144 

172.8 

129.6 

201.6 

aThe number of operations per cycle for 4-bit weights (W4) and 5-bit activations (A5). W8 means 8-bit weights. 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

Quantization Weight Activation Top-1 Top-5 

   
Method Bit-width Bit-width Accuracy  Accuracy 
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Table 5: Comparisons of DNN implementations between previous studies, inter-layer quantization, and intra-layer quantization 
for ImageNet dataset on PYNQ-Z2 (XC7Z020) FPGA 

Implementation 
VGG 

[15] 

ResNet-18 

[2] 

MobileNet-V2 

[2] 

ResNet-18 ResNet-50 MobileNet-V2 ResNet-18 ResNet-50 MobileNet-V2 

(Inter-Layer) (Intra-Layer) 
 

Bit-Width W8A8 W4A4 Middle W4A5, First & Last W8A5 95% W4A5 + 5% W8A5 

Top-1 Accuracy 67.62% 70.27% 65.64% 69.92% 77.08% 64.38% 70.47% 77.25% 65.67% 

Frequency (MHz) 214 100 100 100 

kLUT 29.9 (56%) 28.3 (53%) 39.1 (74%) 41.3 (78%) 

DSP 190 (86%) 220 (100%) 214 (97%) 208 (95%) 

BRAM36 85.5 (61%) 56 (40%) 126.5 (90%) 123 (88%) 

Power (W) 3.5 - - 3.0 3.5 

Frame Rate (FPS) 2.72 21.3 120.7 12.9 7.8 49.2 27.8 13.3 132.3 

Throughput (GOPS) 84.3 (CONV) 77.0 71.8 46.8 63.6 29.3 100.6 108.6 78.7 

GOPS/kLUT 2.825 2.725 2.538 1.197 1.627 0.749 2.436 2.629 1.907 

GOPS/DSP 0.444 0.350 0.326 0.219 0.297 0.137 0.484 0.522 0.379 

Energy Efficiency (GOPS/W) 24.1 - - 15.6 21.2 9.8 28.7 31.0 22.5 

 
Different quantization accuracies and resource allocation algorithms were applied to PYNQ-Z2 and ZCU102 FPGA 

boards. It is important to remember that the data packing optimization provided in Section 3.2.3 allows FILM-QNN 

to scale indefinitely, as predicted by our modeling and proven by the resource use in Table 5. Since the multiply-

accumulate (MAC) operations are comparable to two separate operations, we focus on them since they need the 

greatest processing power in DNNs. We investigate the computing capabilities when 1) only using LUTs for MAC 

operations, 2) only using DSPs for MAC operations, and 3) utilizing both LUTs and DSPs for each quantization 

precision (4-bit only, 8-bit only, and 95% 4-bit and 5% 8-bit for the weights). 

Operations with 4-bit weights (W4A5 Op columns) and 8-bit weights (W8A5 Op columns) list the attainable 

parallelism degree on each kind of FPGA computation resources, i.e. the number of operations handled by LUTs or 

DSPs each cycle. For each implementation, we derive its peak throughput in Giga Op- erations Per Second (GOPS) 

based on its degree of complete parallelism and its operating frequency. Using 95% 4-bit weight quantization and 

5% 8-bit weight quantization in optimal implementations, peak performance was 2611 GOPS on ZCU102 and 

201.6 GOPS on PYNQ-Z2. Using both LUTs and DSPs on ZCU102 results in 1.89x and 1.13x greater throughput 

than using LUTs solely or DSPs exclusively, respectively, within the 95% 4-bit and 5% 8-bit weight quantization, 

respectively. 

These enhancements on PYNQ-Z2 are 1.17 and 1.56, respectively. Similarly, when working with weight 

quantization precisions of just 4 bits or 8 bits, employing both LUTs and DSPs gives higher throughput than using 

either one alone. Reason being, in mixed-precision implementations, LUT and DSP usage ratios are greater and 

more balanced than in systems using just LUTs or only DSPs for calculations. 

In general, we find that it is preferable to execute as many MAC operations as possible using the FPGA's DSP 

capabilities before resorting to using the LUTs. Using DSPs for MAC operations also results in the consumption of 

LUTs owing to data packing, with the LUT consumption per DSP being around 2 times greater for W4A5 

operations than for W8A5 operations due to the fact that a single DSP may do four W4A5 multiplications or two 

W8A5 multiplications, respectively. Our 95% 4-bit and 5% 8-bit weight quantization provides the best peak 

throughput, matching the 4-bit alone weight quantization on PYNQ-Z2 and ZCU102, among varied quantization 

precisions employing LUTs and DSPs. Throughput on PYNQ-Z2 is increased by 1.56, while throughput on 

ZCU102 is increased by 1.54, as compared to the 8-bit alone weight quantization. The throughput of our mixed-

precision weight quantization and the 4-bit only weight quantization are same. 
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Table 6: Comparisons of DNN implementations between inter-layer and intra-layer quantization for ImageNet dataset on 
ZCU102 FPGA 
 

 

 

Implementation 

ResNet 

-18 

ResNet 

-50 

MobileNet 

-V2 

ResNet 

-18 

ResNet 

-50 

MobileNet 

-V2 

(Inter-Layer) (Intra-Layer) 
 

Bit-Width 
Middle W4A5, 

First & Last W8A5 
95% W4A5 + 5% W8A5 

Top-1 Accuracy 69.92% 77.08% 64.38% 70.47% 77.25% 65.67% 

Frequency (MHz) 150 150 

kLUT 

DSP 

BRAM36 

174.5 (64%) 

2096 (83%) 

439 (48%) 

180.1 (66%) 

2092 (83%) 

440.5 (48%) 

Power (W) 13.4 12.9 

Frame Rate (FPS) 

Thrpt. (GOPS) 

GOPS/kLUT 

GOPS/DSP 

72.8 

263.7 

1.511 

0.126 

47.4 

387.8 

2.222 

0.185 

190.1 

113.3 

0.649 

0.054 

214.8 

778.9 

4.324 

0.372 

109.1 

891.4 

4.948 

0.426 

537.9 

320.1 

1.777 

0.153 

Energy Efficiency 

(GOPS/W) 
19.7 28.9 8.5 60.4 69.1 24.8 

quantization since the FPGA board could not accommodate more computations due to the routing issue. 

1.11 Comparison with Prior Studies and Inter-Layer Quantization 
Different quantization accuracies and resource allocation algorithms were applied to PYNQ-Z2 and ZCU102 

FPGA boards. It is important to remember that the data packing optimization provided in Section 3.2.3 allows 

FILM-QNN to scale indefinitely, as predicted by our modeling and proven by the resource use in Table 5. Since 

the multiply-accumulate (MAC) operations are comparable to two separate operations, we focus on them since 

they need the greatest processing power in DNNs. We investigate the computing capabilities when 1) only using 

LUTs for MAC operations, 2) only using DSPs for MAC operations, and 3) utilizing both LUTs and DSPs for 

each quantization precision (4-bit only, 8-bit only, and 95% 4-bit and 5% 8-bit for the weights). 

Operations with 4-bit weights (W4A5 Op columns) and 8-bit weights (W8A5 Op columns) list the attainable 

parallelism degree on each kind of FPGA computation resources, i.e. the number of operations handled by LUTs 

or DSPs each cycle. For each implementation, we derive its peak throughput in Giga Op- erations Per Second 

(GOPS) based on its degree of complete parallelism and its operating frequency. Using 95% 4-bit weight 

quantization and 5% 8-bit weight quantization in optimal implementations, peak performance was 2611 GOPS on 

ZCU102 and 201.6 GOPS on PYNQ-Z2. Using both LUTs and DSPs on ZCU102 results in 1.89x and 1.13x 

greater throughput than using LUTs solely or DSPs exclusively, respectively, within the 95% 4-bit and 5% 8-bit 

weight quantization, respectively. 

These enhancements on PYNQ-Z2 are 1.17 and 1.56, respectively. Similarly, when working with weight 

quantization precisions of just 4 bits or 8 bits, employing both LUTs and DSPs gives higher throughput than using 

either one alone. Reason being, in mixed-precision implementations, LUT and DSP usage ratios are greater and 

more balanced than in systems using just LUTs or only DSPs for calculations. 

In general, we find that it is preferable to execute as many MAC operations as possible using the FPGA's DSP 

capabilities before resorting to using the LUTs. Using DSPs for MAC operations also results in the consumption 

of LUTs owing to data packing, with the LUT consumption per DSP being around 2 times greater for W4A5 

operations than for W8A5 operations due to the fact that a single DSP may do four W4A5 multiplications or two 

W8A5 multiplications, respectively. Our 95% 4-bit and 5% 8-bit weight quantization provides the best peak 

throughput, matching the 4-bit alone weight quantization on PYNQ-Z2 and ZCU102, among varied quantization 

precisions employing LUTs and DSPs. Throughput on PYNQ-Z2 is increased by 1.56, while throughput on 

ZCU102 is increased by 1.54, as compared to the 8-bit alone weight quantization. The throughput of our mixed-

precision weight quantization and the 4-bit only weight quantization are same. 
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2 CONCLUSIONS 

In this research, we provide FILM-QNN, a generic framework for quantizing and speeding up DNNs on FPGAs. We suggest quantizing each 

layer of a DNN with the majority of weight filters as 4-bit and the minority of weight filters as 8-bit to maintain accuracy and hardware 

parallelism. We use DSP packing, weight reordering, and data packing, all of which are optimization approaches for low-precision 

calculations, in the design of our FPGA accelerator. To further facilitate the simultaneous calculations at varying degrees of accuracy, we 

provide a comprehensive model to direct the fair allocation of FPGA resources. We have also used Vivado HLS to evaluate FILM-QNN on 

three other DNN models running on two different Xilinx FPGA platforms (PYNQ-Z2 and ZCU102): ResNet-18 and ResNet-50, and 

MobileNet-V2. The accuracy of our optimized mixed-precision implementations (70.47%, 77.25%, and 65.67% for the three models, 

respectively) is equivalent to that of the 8-bit precision designs, while the throughput (214.8 FPS, 109.1 FPS, and 537.9 FPS on ZCU102) is 

comparable to that of the 4-bit precision implementations. 

ACKNOWLEDGMENTS 

NSF CCF-1901378, NSERC Discovery Grant RGPIN-2019-04613, NSERC Discovery Grant DGECR-2019-00120, Alliance Grant ALLRP-552042-

2020, and CFI John R. Evans Leaders Fund have all contributed to this study. 

REFERENCES 
[1] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. 2013. Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv preprint 

arXiv:1308.3432 (2013). 

[2] Sung-En Chang, Yanyu Li, Mengshu Sun, Runbin Shi, Hayden K-H So, Xuehai Qian, Yanzhi Wang, and Xue Lin. 2021. Mix and Match: A novel FPGA-centric deep neural network 

quantization framework. In 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 208–220. 

[3] Gong Cheng, Lu Ye, Li Tao, Zhang Xiaofan, Hao Cong, Chen Deming, and Chen Yao. 2019. �L2Q: An Ultra-Low Loss Quantization Method for DNN. The 2019 International Joint 

Conference on Neural Networks (IJCNN) (2019), 1–8. 

[4] Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and Kailash Gopalakrishnan. 2018. Pact: Parameterized clipping activation 

for quantized neural networks. arXiv preprint arXiv:1805.06085 (2018). 

[5] Philip Colangelo, Nasibeh Nasiri, Eriko Nurvitadhi, Asit Mishra, Martin Margala, and Kevin Nealis. 2018. Exploration of low numeric precision deep learning inference using 

intel® FPGAs. In 2018 IEEE 26th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE, 73–80. 

[6] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. 2015. Binarycon- nect: Training deep neural networks with binary weights during propagations. In Advances in 

neural information processing systems (NeurIPS). 3123–3131. 

[7] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. 2016. Binarized neural networks: Training deep neural networks with weights and 

activations constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830 (2016). 

[8] Zhen Dong, Zhewei Yao, Yaohui Cai, Daiyaan Arfeen, Amir Gholami, Michael W Mahoney, and Kurt Keutzer. 2019. HAWQ-V2: Hessian Aware trace-Weighted Quantization of 

neural networks. arXiv preprint arXiv:1911.03852 (2019). 

[9] Zhen Dong, Zhewei Yao, Amir Gholami, Michael W Mahoney, and Kurt Keutzer. 2019. Hawq: Hessian aware quantization of neural networks with mixed- precision. In 

Proceedings of the IEEE International Conference on Computer Vision (ICCV). 293–302. 

[10] Steven K Esser, Jeffrey L McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dharmendra S Modha. 2019. Learned step size quantization. International Conference on 

Learning Representations (ICLR) (2019). 

[11] Facebook. 2021. Torchvision. https://pytorch.org/vision/stable/models.html Last accessed Sept 12, 2021. 

[12] Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li, Peng Hu, Jiazhen Lin, Fengwei Yu, and Junjie Yan. 2019. Differentiable soft quantization: Bridging full - precision and 

low-bit neural networks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV). 4852–4861. 

[13] Google. 2021. TensorFlow. https://www.tensorflow.org/lite Last accessed May 27, 2021. 

[14] K. Guo, W. Li, K. Zhong, Z. Zhu, S. Zeng, S. Han, Y. Xie, P. Debacker, M. Verhelst, and Y. Wang. 2021. Neural Network Accelerator Comparison. https://nicsefc.ee. 

tsinghua.edu.cn/projects/neural-network-accelerator/. 

[15] Kaiyuan Guo, Lingzhi Sui, Jiantao Qiu, Jincheng Yu, Junbin Wang, Song Yao, Song Han, Yu Wang, and Huazhong Yang. 2017. Angel-Eye: A complete design flow for mapping 

CNN onto embedded FPGA. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD) 37, 1 (2017), 35–47. 

[16] Peng Guo, Hong Ma, Ruizhi Chen, Pin Li, Shaolin Xie, and Donglin Wang. 2018. Fbna: A fully binarized neural network accelerator. In 2018 28th International Conference on 

Field Programmable Logic and Applications (FPL). IEEE, 51–513. 

[17] Song Han, Huizi Mao, and William J Dally. 2016. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. International 

Conference on Learning Representations (ICLR) (2016). 

[18] Zhezhi He and Deliang Fan. 2019. Simultaneously optimizing weight and quan- tizer of ternary neural network using truncated gaussian approximation. In Proceedings of the 

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 11438–11446. 

[19] Intel. 2017. Intel  Arria  10  Native  Fixed  Point  DSP  IP  Core  User Guide. https://www.intel.com/content/dam/www/programmable/us/en/pdfs/ 

literature/ug/ug_nfp_dsp.pdf Last accessed Sept 11, 2021. 

[20] Li Jiao, Cheng Luo, Wei Cao, Xuegong Zhou, and Lingli Wang. 2017. Accelerating low bit-width convolutional neural networks with embedded FPGA. In 2017 27th International 

Conference on Field Programmable Logic and Applications (FPL) . IEEE, 1–4. 

[21] Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor M. Aamodt, and Andreas Moshovos. 2016. Stripes: Bit-serial deep neural network computing. In 2016 49th Annual 

IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 1–12. 

[22] Sangil Jung, Changyong Son, Seohyung Lee, Jinwoo Son, Jae-Joon Han, Youngjun Kwak, Sung Ju Hwang, and Changkyu Choi. 2019. Learning to quantize deep networks by 

optimizing quantization intervals with task loss. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 4350–4359. 

https://pytorch.org/vision/stable/models.html
https://www.tensorflow.org/lite
https://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-accelerator/
https://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-accelerator/
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_nfp_dsp.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_nfp_dsp.pdf


DogoRangsang Research Journal                                                                         UGC Care Group I Journal 

ISSN: 2347-7180                                                                                                  Vol-13 Issue-02 Aug 2023 

 
 

[23] Cong Leng, Zesheng Dou, Hao Li, Shenghuo Zhu, and Rong Jin. 2018. Extremely low bit neural network: Squeeze the last bit out with admm. In Thirty-Second AAAI Conference 

on Artificial Intelligence (AAAI). 

[24] Fengfu Li, Bo Zhang, and Bin Liu. 2016. Ternary weight networks. arXiv preprint arXiv:1605.04711 (2016). 

[25] Xiaofan Lin, Cong Zhao, and Wei Pan. 2017. Towards accurate binary convo- lutional neural network. In Advances in Neural Information Processing Systems (NeurIPS). 

345–353. 

[26] Qian Lou, Feng Guo, Minje Kim, Lantao Liu, and Lei Jiang. 2019. AutoQ: Auto- mated Kernel-Wise Neural Network Quantization. In International Conference on Learning 

Representations (ICLR). 

[27] Alec Lu, Zhenman Fang, Weihua Liu, and Lesley Shannon. 2021. Demystifying the memory system of modern datacenter FPGAs for software programmers through 

microbenchmarking. In The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA). 105–115. 

[28] Cheng Luo, Wei Cao, Lingli Wang, and Philip HW Leong. 2019. Rna: An accurate residual network accelerator for quantized and reconstructed deep neural net- works. IEICE 

Transactions on Information and Systems 102, 5 (2019), 1037–1045. 

[29] Daisuke Miyashita, Edward H Lee, and Boris Murmann. 2016. Convolu- tional neural networks using logarithmic data representation. arXiv preprint 

arXiv:1603.01025 (2016). 

[30] Hiroki Nakahara, Tomoya Fujii, and Shimpei Sato. 2017. A fully connected layer elimination for a binarized convolutional neural network on an FPGA. In 2017 27th 

International Conference on Field Programmable Logic and Applications (FPL). IEEE, 1–4. 

[31] Hiroki Nakahara, Haruyoshi Yonekawa, Tsutomu Sasao, Hisashi Iwamoto, and Masato Motomura. 2016. A memory-based realization of a binarized deep convo- lutional neural 

network. In 2016 International Conference on Field-Programmable Technology (FPT). IEEE, 277–280. 

[32] Dong Nguyen, Daewoo Kim, and Jongeun Lee. 2017. Double MAC: Doubling the performance of convolutional neural networks on modern FPGAs. In Design, Automation & 

Test in Europe Conference & Exhibition (DATE), 2017. IEEE, 890–893. 

[33] Nvidia. 2021. Nvidia Deep Learning Examples. https://github.com/NVIDIA/ DeepLearningExamples Last accessed Sept 12, 2021. 

[34] Eunhyeok Park, Sungjoo Yoo, and Peter Vajda. 2018. Value-aware quantization for training and inference of neural networks. In Proceedings of the European Conference on 

Computer Vision (ECCV). 580–595. 

[35] Atul Rahman, Sangyun Oh, Jongeun Lee, and Kiyoung Choi. 2017. Design space exploration of FPGA accelerators for convolutional neural networks. In Design, Automation & 

Test in Europe Conference & Exhibition (DATE), 2017. IEEE, 1147– 1152. 

[36] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016. Xnor-net: Imagenet classification using binary convolutional neural networks. In European 

conference on computer vision (ECCV). Springer, 525–542. 

[37] Ao Ren, Tianyun Zhang, Shaokai Ye, Jiayu Li, Wenyao Xu, Xuehai Qian, Xue Lin,  and Yanzhi Wang. 2019. Admm-nn: An algorithm-hardware co-design framework of dnns using 

alternating direction methods of multipliers. In Proceedings of the 24th International Conference on Architectural Support for Programming Languages and Operating Systems 

(ASPLOS). 925–938. 

[38] Hardik Sharma, Jongse Park, Naveen Suda, Liangzhen Lai, Benson Chau, Vikas Chandra, and Hadi Esmaeilzadeh. 2018. Bit fusion: Bit-level dynamically compos- able 

architecture for accelerating deep neural networks. In Proceedings of the 45th Annual International Symposium on Computer Architecture (ISCA). IEEE Press, 764–775. 

[39] Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael W Mahoney, and Kurt Keutzer. 2020. Q-BERT: Hessian Based Ultra Low Precision 

Quantization of BERT.. In Thirty-Second AAAI Conference on Arti- ficial Intelligence (AAAI). 8815–8821. 

[40] Stefan Uhlich, Lukas Mauch, Fabien Cardinaux, Kazuki Yoshiyama, Javier Alonso Garcia, Stephen Tiedemann, Thomas Kemp, and Akira Nakamura. 2020. Mixed Precision 

DNNs: All you need is a good parametrization. International Conference on Learning Representations (ICLR) (2020). 

[41] Yaman Umuroglu, Nicholas J Fraser, Giulio Gambardella, Michaela Blott, Philip Leong, Magnus Jahre, and Kees Vissers. 2017. Finn: A framework for fast, scalable binarized 

neural network inference. In Proceedings of the 2017 ACM/SIGDA Inter- national Symposium on Field-Programmable Gate Arrays (FPGA). ACM, 65–74. 

[42] Mário Véstias, Rui Policarpo Duarte, José T de Sousa, and Horácio Neto. 2017. Parallel dot-products for deep learning on FPGA. In 2017 27th International Conference on 

Field Programmable Logic and Applications (FPL). IEEE, 1–4. 

[43] Junsong Wang, Qiuwen Lou, Xiaofan Zhang, Chao Zhu, Yonghua Lin, and Dem- ing Chen. 2018. Design flow of accelerating hybrid extremely low bit-width neural network in 

embedded FPGA. In 2018 28th International Conference on Field Programmable Logic and Applications (FPL). IEEE, 163–1636. 

[44] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. 2019. HAQ: Hardware- Aware Automated Quantization with Mixed Precision. International Conference on Computer 

Vision and Pattern Recognition (CVPR) (2019), 8604–8612. 

[45] Bichen Wu, Yanghan Wang, Peizhao Zhang, Yuandong Tian, Peter Vajda, and Kurt Keutzer. 2018. Mixed precision quantization of convnets via differentiable 
 

neural architecture search.  arXiv preprint arXiv:1812.00090 (2018). 

[46] Xilinx. 2017. Deep Learning with  INT8  Optimization  on  Xilinx  De- vices. https://www.xilinx.com/support/documentation/white_papers/wp486- deep-learning-

int8.pdf Last accessed Sept 12, 2021. 

[47] Xilinx. 2020. Convolutional Neural Network with INT4 Optimization on Xilinx Devices. https://www.xilinx.com/support/documentation/white_papers/wp521- 4bit-

optimization.pdf Last accessed Sept 12, 2021. 

[48] Yifan Yang, Qijing Huang, Bichen Wu, Tianjun Zhang, Liang Ma, Giulio Gam- bardella, Michaela Blott, Luciano Lavagno, Kees Vissers, John Wawrzynek, and Kurt Keutzer. 

2019. Synetgy: Algorithm-hardware co-design for convnet acceler- ators on embedded fpgas. In Proceedings of the 2019 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays (FPGA). ACM, 23–32. 

[49] Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael Mahoney. 2019. PyHessian: Neural networks through the lens of the Hessian. arXiv preprint arXiv:1912.07145 (2019). 

[50] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong. 2015. Optimizing fpga-based accelerator design for deep convolutional neural networks. In 

Proceedings of the 2015 ACM/SIGDA international symposium on field-programmable gate arrays (FPGA). 161–170. 

[51] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. 2018. Lq-nets: Learned quantization for highly accurate and compact deep neural networks. In Proceedings of 

the European conference on computer vision (ECCV). 365–382. 

[52] Xiaofan Zhang, Junsong Wang, Chao Zhu, Yonghua Lin, Jinjun Xiong, Wen-mei Hwu, and Deming Chen. 2018. DNNBuilder: an automated tool for building high-

performance DNN hardware accelerators for FPGAs. In 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE, 1–8. 

[53] Ritchie Zhao, Weinan Song, Wentao Zhang, Tianwei Xing, Jeng-Hau Lin, Mani Srivastava, Rajesh Gupta, and Zhiru Zhang. 2017. Accelerating binarized con- volutional 

neural networks with software-programmable fpgas. In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA). ACM, 

15–24. 

[54] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. 2017. Incre- mental network quantization: Towards lossless cnns with low-precision weights. arXiv 

preprint arXiv:1702.03044 (2017). 

[55] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. 2016. Dorefa-net: Training low bitwidth convolutional neural networks with low bitwidth 

gradients. arXiv preprint arXiv:1606.06160 (2016). 

[56] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. 2017. Trained ternary quantization. In International Conference on Learning Representations (ICLR). 

https://github.com/NVIDIA/DeepLearningExamples
https://github.com/NVIDIA/DeepLearningExamples
https://www.xilinx.com/support/documentation/white_papers/wp486-deep-learning-int8.pdf
https://www.xilinx.com/support/documentation/white_papers/wp486-deep-learning-int8.pdf
https://www.xilinx.com/support/documentation/white_papers/wp486-deep-learning-int8.pdf
https://www.xilinx.com/support/documentation/white_papers/wp521-4bit-optimization.pdf
https://www.xilinx.com/support/documentation/white_papers/wp521-4bit-optimization.pdf
https://www.xilinx.com/support/documentation/white_papers/wp521-4bit-optimization.pdf

