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Abstract—Smart phone usage has exploded in recent years as a result of their low cost and digitalization of various services.
With the increased use of smartphones, new security concerns have emerged, with threats from various malwares being the
primary source of concern in this study. Various fraudulent mobile apps have exploded in popularity in recent years, notably
on the Android platform, creating insurmountable barriers to identifying hazardous apps. Viruses writers generate new
malware on a daily basis as the popularity of Android devices grows, posing a threat to the system's integrity and users'
privacy. The goal of this thesis is to apply machine learning approaches to detect Android malware. A malware detection
framework for Android is proposed, in which six machine learning models are employed for categorization of distinct
malware, including Decision Trees, Support Vector Machines, Nave Bayes, Random Forests, K-Nearest Neighbors,
Ensemble Methods / Extra-Tree Classifier. The proposed framework's performance is assessed using the CICMalAnal2017
Android malware dataset. The CICMalAnal2017 dataset contains a variety of malware, including adware, ransomware, and
scareware. Feature Correlation, Random Forest Importance, Chi-Square Test, and Information Gain are among the four types
of feature selection strategies used. Various machine learning methods, such as Decision Trees, Support Vector Machines,
Nave Bayes, Random Forests, K-Nearest Neighbors, Ensemble Methods / Extra-Tree Classifier, are tested for malware
classification. Ultimately, ML-based techniques for assessing source code vulnerabilities are described, because adding
security after the app has been released may be more difficult. As a result, the goal of this study is to help academics gain a
deeper understanding of the topic and identify prospective future research and development directions.
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I. INTRODUCTION

Malicious software's pervasiveness poses a severe threat to computer systems. This study focuses on how dynamic malware
features like API calls, file systems, registry keys, printed string information, and network features are processed. Text
analysis techniques are used to process the printable string information features. Over the API calls and PSI features, the
Shannon entropy is also applied. Dynamic analysis was used to examine portable executable files in this study. Machine
learning algorithms were used to develop malware classifiers after extracting the various run-time data.

Despite advancements in the creation of anti-malware systems, malware continues to achieve its harmful goals. Keeping a
computer system secure from malware infestation has become a major concern in recent years. Malware's exponential growth
and sophistication is a major threat to computer and network security. The computer's dependence is also a significant
element, as almost all tasks, from daily life to business, are now performed on the computer [1]. There are two research
communities that are working on the same project at the same time. One is working on dangerous software, while the other is
working on defensive software to defend systems from malware.

Malware is short for malicious software, which is software that is specifically designed to cause disruption, harm, or obtain
unauthorized access to a computer system. Malware is a term used to describe malicious software that is designed to perform
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damaging actions [2]. On the basis of their behavior and mode of execution, dangerous programmes are classed as worms,

viruses, Trojan horses, rootkits, backdoors, spyware, logic bombs, adware, and ransomware. Malware infects computers for a
variety of reasons, including:

e To wreak havoc on the computer system.

e For monetary advantage.

e  For stealing sensitive or private information.

e For the purpose of converting the systems into bots.
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Figure 1: Evolution of Malware (Christopher Krugel, Lastline, Inc.)
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Types of Malware: Malware gains access to a computer, obtains information, or damages it without the owner's knowledge.
Malware, which is a major danger to computer security today, is used in a variety of attacks. Malware comes in many
varieties, including:

e Virus (Vital Information Resources Under Seize)

e Worms

e Trojan Horse

e  Spyware

e Rootkit

e Adware (Advertising-supported software)

e Bots

e Ransomware

Malware Analysis: Malware samples are studied in order to extract traits that can be used to identify the malware. There are
two types of malware analysis techniques: static and dynamic, both of which are explained below.
e  Static Malware Analysis

e Dynamic Malware Analysis

Malware Detection Techniques: Malware detection systems are designed to not only detect malware, but also to fight
against harmful programmes that could destroy a computer system or network assets. The input can be represented in a variety
of ways in order to detect and categories malware samples into appropriate families. The appropriate information or

knowledge about the harmful file, which represents the malware file's behaviour, is required. Static, dynamic, and hybrid
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methodologies are used to assess diverse malware samples. The retrieved data is then expressed in the appropriate format,
which is then used to train the detection system. Byte sequences, Opcodes, Strings, writing style of code, APIs calls, PE
Header information, Memory access operations, Windows Registry, File system accesses, AV/Sandbox submissions, CPU
Registers, Length of functions, Network Activities, and Generated Exceptions are among the fifteen different features that
have been used by various researchers to develop malware detection systems, according to Ucci et al. (2017). The malware
files are evaluated in the most basic sense; features are extracted and represented in an intermediate form before being fed into
malware detection. This intermediate stage is crucial in the detecting process. The false positive rate is reduced if the extracted
information is appropriate for detecting malware [3]. The following are the three primary categories in which many proposed
malware detection approaches are classified.
e Signature-based Malware Detection
e Behaviour-based Malware Detection
i.  Anomaly-based Malware Detection
ii. Anomaly and Benign-based Malware Detection

e Hybrid Malware Detection Techniques

Machine Learning: Malware categorization and grouping are done with the help of a machine learning algorithm. Clustering
is done on unlabeled datasets while classification is done on labelled ones. Two types of classification exist: two-class and
multi-class. Machine learning methods are now frequently utilized for classification and clustering problems on nearly any
form of dataset. At this time, data science is used to solve any real-world problem that requires prediction. Machine learning
techniques are also used in a variety of security domains, including intrusion detection, malicious URL prediction, and
malware identification and classification [4]. It is a more effective way of predicting unknown malware. The reason for this is
that it has numerous algorithms that may be applied to a wide range of malware traits, resulting in better malware detection
results. Aside from its convenience, the machine learning technique has a number of advantages for detecting malware, which
are listed below.

e  Extracts information from file samples in an automated manner.

e  Better at spotting undiscovered variations.

e It cuts down on human work and time spent analyzing malware.

e Anti-virus software that is currently in use can be hacked.

e Many researchers have worked on malware categorization research and have produced superior outcomes.

For malware prediction, machine learning is a preferable option. The reason for this is that it consists of various algorithms
that may be used to detect a wide range of malware traits and generate superior results [5]. The schematic diagram of a

malware classification model utilizing machine learning is shown in Figure 1.
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Figure 1: Framework for Machine Learning

Il. RELATED WORK

This section presents a brief review of the existing schemes for malware detection. We also talk about the gaps in the available
literature and how we might close them when creating the malware detection model.

Schultz et al [6] presented a network packet-based malware detection methodology based on cloud computing. They utilized
data mining methods to minimize the branching of packets by accumulating packet information, whether or not it is relevant
for malware identification. Enck et al. [7] introduced the Kirin framework, which allows us to identify malicious programs by
looking at the rights they seek throughout the installation process. Kirin is built on a set of principles that assist us in reducing
the impact of malware in Android apps.

Wagener et al. [8] suggested an automated and adaptable method for extracting malware behavior from system calls. To
compute related distances, the alignment approach was utilized to find similarities, and the Hellinger distance was determined.
The research claims that disguised malware versions with identical characteristics can be discovered. The authors claim that a
phylogenetic tree that reflects malware's common functions can help with categorization. The following are the missing
aspects of the article:

* There is a lack of understanding about the malware dataset,

* There is no statistical evaluation of performance,

* There is no comparison of the suggested approach to other methods.
Furthermore, it is unclear how a phylogenetic tree may enhance performance.

Naval et al. [9] proposed a dynamic malware detection system that gathers system calls and creates a graph that discovers

semantically meaningful pathways between them. A NP-complete issue is locating all semantically meaningful routes in a
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network. As a result, the authors assessed the most relevant pathways, which define malware behaviors that aren't seen in
benign samples, to decrease the time complexity. According to the authors, the suggested approach beats its competitors
because it can identify malware utilizing system-call injection assaults at a high rate, whereas other methods can't. The article
contains a number of flaws, including performance overhead during path calculation, vulnerability to call-injection attacks,
and the inability to effectively discover all semantically meaningful pathways. The performance may be improved if these

constraints are removed.

A graph-based malware classification approach was proposed by Bruschi et al. (2007). This approach, according to the author,
tackles some simple obfuscation strategies. The control flow graphs were built from the binary files and then compared to
graphs of previously identified dangerous files. Two methods were used to detect malware in this method. The first algorithm
compares the graphs of the binary file B (which is being tested) with a previously known file M. (malware). The second
algorithm compared the reduced graphs in the B file to those in the known file M. The author examined 78 malware samples
against these two methods, with a false positive rate of 4.5 percent for the first algorithm and 4.4 percent for the second
approach, respectively. This method, however, is ineffective against zero-day malware [10]. Zhang et al. (2007) suggested a
method for detecting and classifying malware based on n-gram byte sequence properties. The most important n-gram bytes
that could represent the malware file were extracted using a selection method. Then, using a probabilistic neural network
technique, a classifier was built. A set of decision-rules for detecting malware was included in each classifier. Three kinds of
malware were selected for training from the online VX Heavens database. Moskovitch et al. (2008) suggested a machine
learning strategy based on opcodes for detecting unknown harmful files. 1-byte, 2-byte, 3-byte, 4-byte, 5-byte, and 6-byte
features were assigned to the operation codes. Over the n-byte feature sets, four classification techniques were used: Decision
Tree (DT), Naive Bayes (NB), Artificial Neural Networks (ANN), and Adaboost. According to the author, this technique can

accurately anticipate the maliciousness of a file [11].

Kaur et al. (2016) suggested a hybrid malware detection system that uses a component-based framework to incorporate
several static and dynamic analysis methods. The main purpose of creating the hybrid framework was to detect zero-day
malware automatically using known malware's dangerous activities. By extracting static and dynamic information from
malware samples, the malware detector is trained. For the detection and categorization of new malware, this technique
gathered various static data such as hash value, PE header information, strings, and dynamic activities linked to process
activities, file operations, memory, and network activities [12].

Malware is the most common type of assault that can be identified as a danger to Android. Many researchers have proposed
numerous definitions for malware based on the harm they create. The ultimate definition of malware is any malicious
application containing malicious code [13] with the evil intent [14] of obtaining unauthorised access and performing neither
legal nor ethical activities while violating the three main security principles of confidentiality, integrity, and availability.
Attack goals and behaviour, distribution and infection pathways, and privilege acquisition mechanisms are the three angles
through which malware related to smart devices can be categorised [15]. Frauds, spam emails, data theft, and resource
misappropriation are examples of attack goals and behaviour. The distribution and infection pathways can be characterised as
software markets, browsers, networks, and devices. The privilege and acquisition modes include technical exploitation and
user manipulation, such as social engineering. Android malware [16] is malware that is particular to the Android operating
system and affects or steals data from an Android-based mobile device. Trojans, Spyware, Adware, Ransomware, \WWorms,
Botnets, and Backdoors are all types of malware [17]. Malware is defined by Google as "potentially hazardous apps."
Commercial and noncommercial spyware, backdoors, privilege escalation, phishing, click fraud, toll fraud, Short Message

Service (SMS) fraud, and Trojans were all categorised as malware [18].
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When researching malware, app cooperation should also be taken into account. Two or more apps collaborating to achieve a
destructive aim is known as app collusion [19]. However, if such apps function independently, there is no risk of a harmful
behaviour occurring. App collusion detection requires the identification of malicious inter-app communication and app
permissions [20,21].

ML is a branch of artificial intelligence that focuses on creating applications by learning from data rather than explicitly
programming how the learnt tasks are carried out. Traditional machine learning algorithms produce predictions based on
previous data. The lifecycle of a machine learning process is made up of several steps that must be completed in order. Data
extraction, preprocessing, feature selection, model training, model evaluation, and model deployment are the steps involved
[22]. The major subcategories of ML are supervised learning, unsupervised learning, semisupervised learning, reinforcement
learning, and deep learning [23]. The supervised learning strategy employs a labelled dataset to train the model to tackle
classification and regression problems that are dependent on the kind of output variable (continuous or discreet). The intrinsic
structures (clusters) and properties of a dataset are identified via unsupervised learning, and the model does not require a
labelled dataset to be trained. Semisupervised learning uses a combination of supervised and unsupervised learning
approaches in the case of insufficient labelled data in the dataset [24]. The data for training and the learning model are
inferred. In reinforcement learning, where no training data is used, the model parameters are changed based on feedback from
the environment. Prediction and evaluation cycles are used in this machine learning method [25]. DL is described as the
process of learning and refining algorithms on one's own. It uses artificial neural networks (ANN) as a model and has a higher

or deeper number of processing layers [26].

11l. MACHINE LEARNING TO DETECT ANDROID MALWARE

Signature-based detection methods and behavior-based detection methods are two methods for detecting malware on Android
[27]. The signature-based detection method is straightforward, effective, and yields few false positives. Using a known
malware database, the application's binary code is compared against signatures. This strategy, however, does not allow for the
detection of unknown malware. As a result, the most widely utilised method is behavior-based/anomaly-based detection.
Machine learning and data science approaches are frequently used in this manner. Many studies have been done to detect
Android malware using standard ML-based methods like Decision Trees (DT) and Support Vector Machines (SVM), as well
as novel DL-based models like Deep Convolutional Neural Network (Deep-CNN) [28] and Generative adversarial networks.
These experiments have proven that machine learning can be used to detect malware in Android [29]. Drebin, Google Play
AndroZoo [30], AppChina [31], Tencent [32], YingYongBao [33], Contagio [34], Genome/MalGenome [35], VirusShare
[35], IntelSecurity/MacAfee [36], MassVet [37], Android Malware Dataset (AMD) [38], APKPure [39], Andrototal [40],
Wandouyji.

The other method of performing static analysis to detect An- droid malware with ML is code-based analysis. TinyDroid [41]
provided a model that looked at the most recent malware in the Drebin dataset. The model makes advantage of instruction
simplification and machine learning. The opcode sequence was abstracted from the decompiled DEX files by converting APK
to smali codes. The features were then retrieved using N-gram and combined with the example selection approach. For
intrusion detection, the exemplar selection method used a clustering algorithm called Affinity Propagation to build a good
representation of data (AP). This is because in AP, determining or estimating the number of clusters is not required prior to
launching the programme. The resulting 2,3, and 4-gram sequences were then input into classifiers such as SVM, KNN, RF,
and NB ML. The RF method was found to be the best for this scenario, with a True Positive Rate of 0.915, a False Positive
Rate of 0.106, a Precision of 0.876, and a Recall of 0.915 for a 2-gram sequence. In comparison to the examined ML

algorithms, high accuracy rates for the other 3 and 4-grams were also achieved. The proposed method, however, still has
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flaws, such as the use of malware samples from only a few research studies and few organizations, as well as the lack of
metamorphic malware samples. As a result, some malware may go undetected.

[42] offered another approach to detect malware by analyzing API calls made in operand sequences, using the Drebin dataset
with 5560 malware samples, 361 malware from the Contagio dataset, and 5900 benign apps from Google Play. The package
level details were retrieved from the API calls for the malware prediction model. From the package sequence, which describes
application behavior, the package n-grams were extracted. After training the model using 2415 package n-grams, they were
integrated with DT, RF, KNN, and NB ML algorithms to create a predictive model in this study, which concluded that the RF
method performed with an accuracy of 86.89 percent. Other information contained in operands should be taken into account
because it may have an impact on the overall model. Anrdoidect [43] investigated the link between system functions, sensitive
permissions, and sensitive APIs. The dynamic analysis technique was utilized to explain the application behavior and build
eigenvectors utilizing a variety of system functions. Effective malware detection approaches were compared using the
eigenvectors, as well as the NB, J48 DT, and application functions decision algorithms, and it was discovered that the
application functions decision algorithm outperformed the others. There are still some improvements that can be made to this
strategy.

In [44], a deep learning-based static analysis approach with an accuracy of 99.9% and an F1-score of 0.996 was tested with an
accuracy of 99.9% and an Fl-score of 0.996. A dataset of over 1.8 million Android apps was employed in this method.
Malware characteristics were discovered using vectorised opcode retrieved from the bytecode of APKs using one-hot
encoding. After testing models such as Recurrent Neural Networks, Long Short Term Memory Networks, Neural Networks,
Deep Convents, and Diabolo Networks, it was determined that Bidirectional Long Short-Term Memory (BiLSTMs) is the
optimum model for this method. To construct a more thorough malware detection tool based on deep learning approaches, it is
preferable to analyze the entire byte code with static analysis and verify the app behavior with dynamic analysis.

With dynamic analysis approaches, the DL-Droid framework based on deep learning algorithms [40] presented a novel way of
identifying Android malware. This method, which only included dynamic characteristics, had a detection rate of 97.8%. The
detection rate would climb to 99.6 percent if static features were included as well. The tests were carried out on real devices,
allowing the application to function exactly as the user would expect. In addition, this research includes some comparisons of
detection performance and code coverage. Performances of traditional ML classifiers were also compared. ML-based
approaches such as NB, SL, SVM, J48, Pruning Rule-Based Classification Tree (PART), RF, and DL were outperformed by
this unique method. In addition to this effort, investigating the possibility of including an intrusion detection system into the
DL-Droid would be beneficial.

The AdMat model proposed in [30] explored detecting Android malware using a CNN on Matrix-based technique. This model
classified apps as images and treated them as such. After transferring decompiled source code into call-graph of Graph
Modelling Language (GML) format, the adjacency matrix for apps was built, and it was simplified with a size of 219 * 219 to
improve data processing efficiency. The CNN was trained to identify and classify malware and benign apps using those
matrices as input images. The accuracy of this model is 97.2 percent. Even though the model is extremely accurate, it has

limitations, such as doing only static analysis and performance being dependent on the quantity of characteristics employed.

I\VV. CONCLUSION

Any smartphone is subject to security vulnerabilities, but attackers are particularly interested in Android smartphones. This is
owing to the fact that it is open-source and has a bigger market share than other mobile operating systems. The Android
architecture and security model, as well as potential threat vectors for the Android operating system, were discussed in this
paper. A thorough assessment of the state-of-the-art ML-based Android malware detection algorithms was conducted based

on the available literature, including the most recent research from 2016 to 2021. It went over the various ML and DL models
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and their performance in detecting Android malware, as well as code and APK analysis approaches, feature analysis and
extraction methods, and the proposed methodologies' strengths and limitations. Malware aside, if a developer makes a
mistake, a hacker will have an easier time finding and exploiting these flaws. As a result, strategies for detecting source code
vulnerabilities using machine learning were discussed. The analysis found potential gaps in prior research as well as future

research possibilities for improving Android OS security.

Malware for Android, as well as detection approaches for it, are constantly growing. As a result, we feel that further
assessments covering these developing concerns and their detection methods will be necessary. Since DL approaches have
proven to be more accurate than typical ML models, more complete systematic reviews concentrating solely on DL-based
malware detection on Android will be valuable to the research community, according to our findings in this study. Another
area of interest for systematic reviews and studies is the prospect of employing reinforcement learning to uncover source code

vulnerabilities.
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