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ABSTRACT 

       The goal of this research is to use a regular perturbation approach to investigate heat transfer 

in the flow of a second-order fluid through a channel with porous walls in the presence of a 

transverse magnetic field. For varying values of the Hartman and Reynolds numbers, the second-

order effects on the temperature profile are shown. By setting the second-order parameter to 

zero, the findings may also be obtained for Newtonian fluids. 

INTRODUCTION 

       In issues of gaseous diffusion and other applications, heat transfer in the flow of an 

electrically conducting fluid between porous barriers is of practical importance. Terrill and 

Shrestha looked at the problem of constant laminar flow of an incompressible viscous fluid in a 

two-dimensional channel with varying permeability walls, as well as the effects of a magnetic 

field on the fluid's electrical conductivity. Agrawal explored the problem of second-order fluid 

flow with heat transmission in a conduit with porous walls. Sharma and Singh investigated the 

numerical solution of a second-order fluid flow via a porous channel in a transverse magnetic 

field. The goal of this research is to use a regular perturbation approach to investigate heat 

transfer in the flow of a second-order fluid through a channel with porous walls in the presence 

of a transverse magnetic field. For varying values of the Hartman and Reynolds numbers, the 

second-order effects on the temperature profile are shown. By setting the second-order parameter 

to zero, the findings may also be obtained for Newtonian fluids. 
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THE PROBLEM'S FORMULATION 

       The heat transfer in a two-dimensional steady flow of an incompressible second-order fluid 

in a channel with a width of 2h and two porous walls of equal permeability (coinciding with the 

plane y = h) is studied. The channel's whole system is designed in such a way that the bottom 

and top are completely insulted and do not transmit heat. H0 is a constant magnetic field applied 

normal to the channel axis. Because the magnetic Reynolds number is low, the induced magnetic 

field has been ignored in the flow. A consistent suction V is applied to the channel's two walls. 

Let's pick an x and y axis on a plane parallel and perpendicular to the channel walls, respectively. 

Let u and v represent the velocity components in the x and y directions, respectively. 

A stream function is used to follow Terrill and Shrestha. 

(x,)=(hU-Vx) f()=(x,)=(x,)=(x,)=(x,)=(x,)=(x,)= (1.1) 

       Where U denotes the entry velocity, (= y/h) denotes the dimensionless distance, and 2h is 

the distance between the channel walls. Terril and Shrestha's velocity field in non-dimensional 

form is as follows: 

(U-Vx/h) f' () U (x,) U (x,) U (x,) U (x,) U (x,) U (x,) U (x,) U (x v () = V F  (1.2) 

       Where the dash represents a distinction with regard to. According to the formula (1.2), u is a 

function of x and v is a function of alone. The constitutive equation (1.4), as well as the 

equations of continuity and momentum, may be expressed as follows: 

u/x + (1/h)(v/ ) = 0 u/x + (1/h)(v/ ) = 0 u/x + (1/h)(v/ ) = (1.3) 

(v/h) v/= uu/ x + (v/h) v/= (p/ x)+(v1/h2) -(1/p) (p/ x)+(v1/h2) ((2u/ 2)+v2[(1/h21)] ((2u/ 

2)+v2[(1/h21)] ((2u/ 2)+v2[( (2/ 2)uu/ x+u (v/h)(v/ )+(2/h2)(/ )+(v/h)(v/ )+(2/h2)(/ ) [(u/ x)(v/ )] 

(u/ x)(v/ )] (u/ x)(v/ )] (u/ x)(v/ +(v3/h2)(∂/∂x)(∂u/∂ξ)2 - e2H02u/p e2H02u/p e2H02u/p e2H02 

(1.4) 

-(1/p)(p/)+(v1/h)(2v/ 2)+v2+(1/p)(p/)+(v1/h)(2v/ 2)+v2 

 

[(2/h)(2/ 2)(v/h)(v/h)(v/ )] +2(/x)(u/ x)(u/ x)(u/ )] +(4/h2) (u/)(2u/2)+(v/)(2v/ 2)-

2/x+(u/)(2u/2)+(v/)(2v/ 2) uu/x+(v/h) u/] uu/x+(v/h) u/] +(v3h2) [4/(v/)2+/(u/)2] [4/(v/)2+/(u/)2] 

(1.5) 

k(2T/x2+ 

2T/y2)+pcv(uT/x+vT/y)+pcv(uT/x+vT/y)+pcv(uT/x+vT/y)+pcv(uT/x+vT/y)+pcv(uT/x+vT/y) 

(1.6) 
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    v1 (=1/p) is the kinematic viscosity, v2 (=2/p) is the kinematic elastic-viscosity, v3 (=3/p) is 

the kinematic coefficient of cross-viscosity, cv is the specific heat at constant volume, k is the 

thermal conductivity, and = y/h is the dimensionless distance. 

The viscous dissipation function is defined as follows: 

= ijdij ijdij ijdij ijdij ijdij (1.7) 

The mixed deviatoric stress tensor is denoted by ij. 

The boundary criteria are as follows: 

 

(u/ )_=0=0, (u/ )_=0=0, (u/ )_=0=0, (u/ )_=0=0, (u/ ) =0=0, 

v(x,0) = 0, v(x,1) = V, v(x, -1) =-V, v(x, -1) =-V 

T(x, 1) = T1, T(x, -1) = T-1 (1.8) 

We get by substituting (1.2) in equations (1.4) and (1.5) and removing p from the resulting 

equation. 

1 (f fv –f'f iv) – S2 f "=0, fiv + R(f 'f "- f f "') + 1 (f fv –f'f iv) – S2 f "=0, (1.9) 

       The suction is represented by R (= Vh/v1). The Hartmann number, S[-eH0h(/1)1/2], is an 

elastic-viscous parameter guiding the effects of elastic-viscosity of the fluid, and Reynolds 

number, 1 (=v2V/hv1), is an elastic-viscous parameter governing the effects of elastic-viscosity 

of the fluid. 

    The shape of the temperature distribution is suggested by equations (1.6) and (1.2) as follows: 

T = T-1+(v1V)[()+(U/V)-(x/h)2 ()]/ T = T-1+(v1V)[()+(U/V)-(x/h)2 ()]/ (hCv). (1.10) 

      We derive the coefficient of (U/V-x/h)2 and terms independent of (U/V-(x/h)2 on both sides 

of the resultant equation by using equation (1.10) in equation (1.6) and equating the coefficient 

of (U/V-x/h)2 and terms independent of (U/V-(x/h)2 on both sides of the resulting equation. 

The Prandtl number is p = 1cv/k, and the second-order parameter is 2=22/(h2p). 

The temperature distribution may be stated in a dimensionless manner as follows: 

T = (T-T-1)/(T1-T-1)=E(+2), T = (T-T-1)/(T1-T-1)=E(+2), T = (T-T-1)/(T1-T- (1.13) 

where E(=v1V/(T1-T-1)hCv] is the Eckert number and [=(U/V-x/h)] is the dimensionless 

distance. 

V.3 THE PROBLEM'S SOLUTION 

Using the correlations 1=-R 1(10) and S2 = RS12 eqn. (5.9), 

(f' f"-f f"') Fiv+R (f' f"-f f"') 

-RS12f "=0 -R 1(f fv-f' fiv)-RS12f "=0 -R 1(f fv-f' fiv)-RS12f "=0 (1.14) 
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We can design a regular perturbation strategy for solving eqns for modest values of the suction 

Reynolds number R. (1.11), (1.12), and (1.14) are obtained by multiplying f, –, and – in R 

powers. Substituting Rnfn ()=f()=f()=f()=f()=f()=f()=f()=f( (1.15) ()=Rnn 

()=()=()=()=()=()=()=()=()=()=( (1.16) ()=Rnn ()=()=()=()=()=()=()=()=()=()=( (1.17) 

We get the following sets of equations by combining eqns. (1.11), (1.12), and (1.14) and 

equating the like powers of R on the two sides of the resultant equations: 

f0iv=0 

1 (f0 f0v-f0'f0iv)-S12f0" = f1iv+f0' f0"-f0f0"' 

f2iv+f1' f0"-f0'f1"-f1'f0'f0'f0'f0'f0'f0'f0'f0'f0'f0'f0'f0'f0'f0'f 

- 1 (f1 f0v-f0'f1v- f1'f0iv- f0'f1iv) (f1 f0v-f0'f1v- f1'f0iv- f0'f1iv) (f1 f0v-f0'f1v 

-S12f1" = 0 -S12f1" = 0 -S12f1' (1.18) 

0,0,0,0,0,0,0,0,0,0, 

1 = 2Pf0 0' + 4P0f0' + 2Pf0"2=0 

2= 2P(f1 0'+f0 1')+4P(0f1'+f1'0+f0"f0"f0"f0"f0"f0"f0"f0"f0"f0"f0"f0"f0"f0"f0"f0"f0"f 

+2P 2(f0-f0"f0"f0"f0"f0"f0"f0"f0"f0"f0"f0"f0"f0"f0"f0    (1.19) 

0"+20% =0, 

0'+2 1+8Pf0'2=0 1"-2Pf0 0'+2 1+8Pf0'2=0 

2"-2P(f1 0'+ f1 0')2"-2P(f1 0'+ f1 0')2"-2P(f1 0'+ f1 

+2 2v+16P+2 2v+16P+2 2v+16P+2 2v 2 f0 f0' f0"'=0 f0 f0' f0"'=0 f0 f0' f0"'=0 f0 f0"'=0 f0 f0 

(1.20) 

The boundary condition (5.8) might be rephrased as follows: 

n fn(0) = fn'(1) = fn"(0) = 0 n fn'(1) = fn"(0) = 0 n fn"(0) = 0 n 

fn (1) = 0 1 f0(1) = 1 

0(1)=1/E = w, n (-1) =0 n, n (-1) =0 n, n (-1) =0 n, n (-1) =0 n (say), 

n(1) = 0, 0 1, and n(1) = 0n 

    The following is the solution to equations (1.18), (1.19), and (1.20) when the boundary 

condition (1.21) is applied: 

f0() = (1/2)(3-3)(1/2)(3-3)(1/2)(3-3)(1/2)(3-3)(1/2)(3-3)(1/2 

f1() = -(1/280)(7-3 3+2)-S12/40)(5-2 3+), f1() = -(1/280)(7-3 3+2)-S12/40)(5-2 3+), 

f2() = (1/1293600)(14 11-385 9+198 7+876 3-703 )-(1/280) f2() = (1/1293600)(14 11-385 9+198 

7+876 3-703 )-(1/280) f2() = (1/1293600)(14 11-385 9+198 7+876 3-703 )- {(3ξ7-
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9ξ3+6ξ)+S12(ξ7-3ξ3+2ξ)} -S12(1/100800)(159+1087-947-545-2763+207) +(S12/8400)(57-

215+273-11) = 0() = 0() = 0() = 0() = 0 P(1-4) = 1() = (3/2)P(1-4) 

2() = 3P2383/280-85/6/10+4/4-(3/2)2) -P(9/280) (1-4)2 +(S12/10) (1+2 6-34)-(3/5) 

P2 (1-6) P2 (1-6) P2 (1-6) P2 (1-6) P2 (1 

(w/2)(+1), 0(), 0(, 0(, 0(, 0(, 0(, 0(, 0 

(wP/40) = 1() 

(10 3 - 5 - 9) - (P/2) (212 + 6 - 64-16) 

ϕ2(ξ)=P2[29ξ10/840-51ξ8/140+37ξ6/20-9ξ4/2-1149ξ2/280+ 

(w/40) (1391/2520-93/2+995/20-157/14 + 59) 

-P[11/168-332/280+11 4/140-36/140-38/280+10/168-S12(2 2/5-13 8/280+ 6/5-74/20-57/280) 

+2(3-32/5-3 8/10+12 6/5-94/2)-w(71/100800-3/840+3 5/5600- 9/ 20160) +S12(19/8400- 7/1680 

+5/400- 3/240)]. 

DISCUSSIONS AND RESULTS 

 

(i) The values derived by Sharma and Singh for the functions f0, f1, and f2 are identical. 

(ii) The results for 2 = 0 are quite similar to those obtained by Terril and Shrestha. 

(iii) The results for S = 0 are identical to those obtained by Agarwal. 

CONCLUSIONS 

        The fluctuation of the temperature profile for R = 0.01, 0.1, 1.0 at P = 0.4, = 0.4, E = 1, S1 = 

1, 2 = -1 shows that for R = 0.1, temperature climbs up to roughly = 0.7 and then progressively 

falls until it reaches its value 1 at the boundary wall = 1. The temperature graph is parabolic with 

the vertex upward at R = 1 and reaches its greatest value in the centre of the wall gap-length, 

with the minimum value at the border wall = -1. Temperature rises linearly across the wall gap-

length for R = 0.01, with a minimum at the boundary wall = -1 and a high at = 1. It is also 

obvious from this diagram that when the suction Reynolds number R increases, the temperature 

rises. The temperature profile for P = 0.4, = 0.4, E = 1, S1 = 1, R = 1 for 2 = 0, 0.1, 1.0 shows 

that the temperature graph is generally parabolic with vertex upward and reaches its greatest 

value in the centre of the wall gap-length with a minimum at the border wall = -1. This picture 

also shows that when the cross-viscous second-order parameter 2 increases, the temperature 

falls. The temperature graph is essentially parabolic with vertex upward and attains its greatest 

value at the centre of the wall gap-length with a minimum at the border wall = -1 for P = 0.4, = 



Dogo Rangsang Research Journal                                                        UGC Care Group I Journal 

ISSN : 2347-7180                                                                                 Vol-09 Issue-01 No. 01 : 2022 

Page | 28                                                                                            Copyright @ 2022 Authors 

0.4, E = 1, R = 1, 2 = -1 for S1= 0, 1, 2. This graphic also shows that when the Hartman number 

S1 increases, the temperature lowers. 
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