STUDY OF MECHANICAL PROPERTIES OF BANANA FIBRE COMPOSITES

Ayusman Nayak⁽¹⁾, Abhishek Chanda⁽²⁾, B. Ashutosh Pattanaik⁽²⁾, Akash Kumar Nayak⁽²⁾, Shasank Sekhar Parida⁽²⁾

¹Professor, Department of Mechanical Engineering, Gandhi Institute for Technology (GIFT), Bhubaneswar ² UG Scholar, Department of Mechanical Engineering, Gandhi Institute for Technology (GIFT), Bhubaneswar

SUMMARY: Banana fiber in blend with resin is brilliant for making practical composite materials. The impact of the plan of resin and banana fiber in the planning of composites has likewise been examined. A volume part of 0.15 resin blended in with banana fiber gives 53.5 % expansion in the elasticity and 106 % increment in the effect strength of the composites. The rigidity shows the most elevated esteem when a resin volume part of 0.17 is utilized and an interleaving plan of resin and banana fiber is followed. Notwithstanding, when lower volume part of resin is utilized, a private combination of banana fiber and resin shows the most elevated elasticity.

KEYWORDS: Banana fibres, composite material, natural fibre,

INTRODUCTION

Multi-component composite materials comprising of two or more families of fibres have been attracting the attention of researchers these years. This is because, the usage of one type of fibre alone has proved to be inadequate in satisfactorily tackling all the technical and economic problems confronted by them while making fibre reinforced composites. These types of composites introduce additional degrees of compositional freedom for its making and provide yet another dimension to the potential versatility of fibre reinforced composite materials. Combination of a high performance and a low performance fibre provides versatility in the performance of the product. Various reports of hybrid composites of natural fibres reveal reduction in the material cost due to the low cost of the natural fibres used. The mechanical and physical properties of natural fibre reinforced plastics reach the values of glass fibre reinforced system only on certain conditions. Investigations on lignocellulosic fibre composites have shown that the properties of the fibre can be better utilised in hybrid composites [1-7]. Mohan and Kishore [2] have reported that glass has got good reinforcement effect along with jute. Clark and Ansell [3] have reported improvement of various mechanical properties of jute-glass hybrid laminates with different arrangements of jute and glass in the laminate. Pavithran et al. [4] have studied the mechanical properties of coir-glass hybrid composites containing varying amounts of glass fibre. They have noticed a considerable enhancement in the mechanical properties by the incorporation of very small volume fraction of glass. Studies on sisal-glass in polyester have showed a linear increase in the work of fracture by varying the volume fraction of the glass at the core [5]. Attempts have been made in our laboratory to prepare hybrid composites of sisal and glass in polyethylene and oil palm empty fruit bunch fibre and glass in PF. It has been reported that addition of glass has improved the orientation characteristics and thereby the tensile strength of the composites [6]. A ratio of 0.26:0.74 volume fraction of glass and oil palm fibre gave 23% improvement in the Izod impact strength of the composite. Better properties were given by intimately mixed hybrid composites [7].

Dogo Rangsang Research Journal ISSN : 2347-7180

UGC Care Group I Journal Vol-12 Issue-05 No. 01 May 2022

fibre component with the smallest elongation to break. The traditional belief is that materials with significant differences in breaking strains will not share the same load path. Based on this view, when a collection of fibres is uniformly strained, the collection tends to break as the strain level reaches the breaking strain level of the fibre which has the smallest breaking strain level. A subsequent infinitesimal increase in strain causes all those fibres characterised by the smallest breaking strain to fail. The sudden transfer of load to the remaining unbroken fibres is presumed to lead to catastrophic failure. Therefore the ultimate strength of the system is the stress level at which the elongation of the system has reached the ultimate elongation of the fibre family [8]. The two fibres in the group are strain compatible only if strain compatibility parameter, λ , has a value ~1 [8]. In banana-glass system, the value of λ is 0.7, i.e., ~1. Therefore the two fibres are strain compatible.

In our earlier studies, it was noted that banana fibre was an effective reinforcement in polyester composites [9]. In this study, attempts have been made to improve the mechanical properties of the composite by the incorporation of glass fibre, based on the reports of other researchers [1-7]. Composites with different volume fraction of glass have been prepared and analysed.

EXPERIMENTAL

Materials used

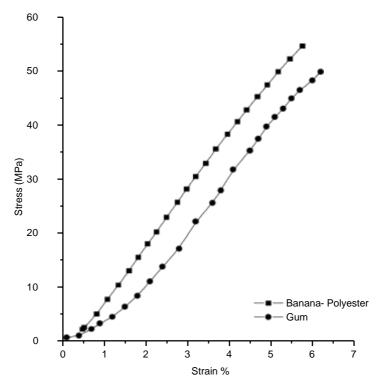
Banana fibre obtained from Sheeba Fibre was used in this study. Unsaturated polyester HSR 8131 (sp. gravity 1.12, viscosity 65 cps, gel time 25 min) was used as matrix. Multidirectional resin used for the study. Methyl ethyl ketone peroxide and cobalt naphthenate were of commercial grade supplied by Sharon enterprises.

Preparation of composites

Randomly oriented resin and neatly separated banana fibre cut at a uniform length of 3 mm were evenly arranged in a mould measuring $150 \times 150 \times 3$ mm in the required layering pattern for preparing the samples. Composite sheets were prepared by impregnating the fibre with the polyester resin to which 0.9 volume percent Cobalt Naphthenate and 1% Methyl Ethyl Ketone Peroxide were added. The resin was degassed before pouring and the air bubbles were removed carefully with a roller. The closed mould was kept under pressure for 12 hours; samples were post cured and test specimens of the required size were cut out from sheets.

Different volume fractions of glass were used for the preparation of samples.

Mechanical tests


Test specimens were cut from composite sheets. Tensile testing was carried out using FIE electronic tensile testing machine TNE-500 according to ASTM D 638-76. Five samples were tested in each set and the average value is reported. Impact test was done on a Charpy impact tester Instron Wolpert PW5 according to ASTM D256. Minimum of four samples were tested in each case and the average value is reported. Fractography of the failure surfaces of the composites were examined by Scanning Electron Microscope after sputtering the surfaces with gold.

Dogo Rangsang Research Journal ISSN : 2347-7180

RESULTS AND DISCUSSION

Tensile stress-strain behaviour

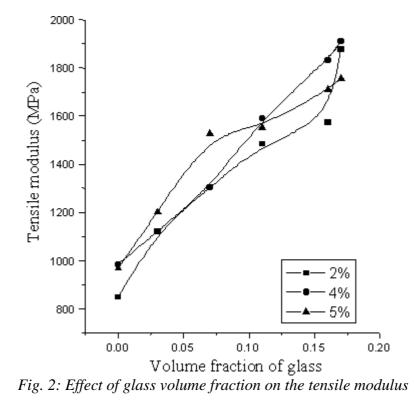

Tensile stress-strain behaviour of neat polyester and banana/polyester composite with fibre volume fraction 0.4 are shown in Fig. 1. Stress-strain behaviour of the hybrid composite where the glass volume fraction is 0.03, 0.07, 0.11, 0.15, 0.16, and 0.17 and the total fibre volume fraction is constant is also shown in Fig. 3.

Fig. 1: Comparison of the stress-strain behaviour of neat polyester and banana fibre composite

Tensile modulus

The tensile modulus of the samples at 2, 4 and 5% elongation are compared (Fig. 2). At 2% elongation the modulus is found to be the lowest for the pure banana fibre composite. The modulus value shows an increasing trend with an increase in glass volume fraction. Addition of glass improves the tensile modulus. Tensile modulus values are indicative of the stiffness of the material.

Tensile strength

Fig. 3 shows the variation of tensile strength of the samples with respect to the variation of glass fibre volume fraction when the total volume fraction of the two fibres is kept constant. Tensile strength of the samples increase linearly will the increase in glass volume fraction. In hybrids of carbon and glass the presence of higher extension glass fibre has been found to reduce the probability of failure of the lower extension carbon fibre resulting in a higher breaking strength of the carbon fibres [11]. In the present study, the increased tensile strength of the hybrid can be attributed to the presence of high modulus glass fibres. When the volume fraction of glass is changed from 0.11 to 0.15, the increase in tensile strength is marginal. At high glass volume fraction of glass, the fracture occurs in the composite mainly by interlayer delamination.

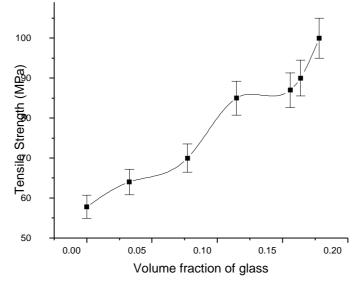


Fig. 3: Effect of glass volume fraction on the tensile strength

Dogo Rangsang Research Journal ISSN : 2347-7180

Impact strength of banana-resin hybrid composites

Fig. 4 shows the impact strength of the composites. Impact strength of the composite does not show much change from that of banana fibre composites when the volume fraction of glass is maintained at 0.03. The impact strength increases to 196% when the glass volume fraction is increased to 0.11. However the impact strength is found to be lower when the concentration of the core material is increased further.

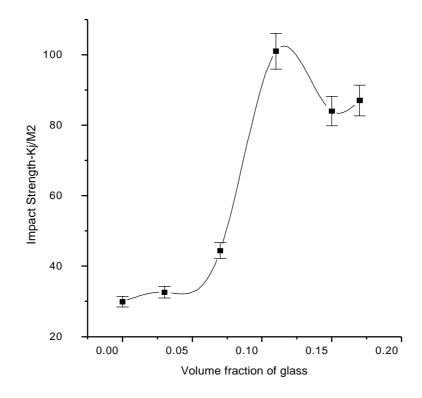


Fig. 4: Effect of resin volume fraction on the impact strength

Effect of resin-banana layering on the impact strength

Mallick and Broutman [14] have reported that stacking sequence is more important than composition in determining toughness, and that different lay-ups maximise different toughness parameters such as total energy, initiation energy or propagation energy. In composites with glass volume fraction 0.03, it is found that the arrangement of the fibre within the composite affects the value of impact strength. The highest value is obtained when banana and glass are kept as interleaving layers G-B-G-B-G. In this arrangement, the core thickness is very small. When a crack tip approaches a fibre, the crack crosses the fibres and cuts them as well as the matrix. Then crack changes its direction and moves through the matrix parallel to the fibres. Such debonding fracture consumes more energy by creation of more surface area within the sample. In composites with the volume fraction of glass 0.11 and 0.17 also, the impact strength shows the highest value where the total number of layers are the maximum. The impact strength shows a decrease with the decrease in the number of layers. Unlike tensile strength, intimately mixed composites shows the lowest impact strength. Short and Summerscales [15] have reported a negative hybrid effect in fracture tests of intimately mixed composites. Harris and Bunsell [16] have reported that intimately mixed composites are inferior to interply lay ups in impact resistance because of the finer state of subdivision.

CONCLUSION

The above study concludes that the tensile strength of banana -resin hybrid composites shows a linear increase as the volume fraction of glass is increased. The geometry or the layering of the fibres affect the mechanical properties of the composites. Tensile strength shows the maximum value in intimately mixed composite at low volume fraction of glass

The impact strength of the hybrid composite increases when the glass volume fraction is increased up to 0.11. A further increase in glass volume fraction lowers the impact strength slightly.

REFERENCES

- 1. Bledzki, A. K. and Gassan, J., "Hand Book of Engineering Polymeric Materials", Nicholas P., Ed., Cheremisinoff Publishers, Marcel Dekker.
- 2. Mohan, R., Kishore, M. K., Sridhar, R. M. and Rao, V. G. K., Journal of Material Science Letters, Vol. 2, 1983, pp. 99-102.
- 3. Clark, R. A. and Ansell, M. P., Journal of Material Sciences, Vol. 21, 1986, p. 269.
- 4. Pavithran, C., Mukherjee, P. S. and Brahmakumar, M., Journal of Reinforced Plastics and Composites, Vol. 10, 1991, pp. 91-101.
- 5. Pavithran C., Mukherjee, P. S., Brahmakumar, M. and Damodaran, A. D., Journal of Material Science, Vol. 26, 1991, pp. 455-459.
- 6. Kalaprasad, G. and Thomas, S., International Plastics Engineering and Technology, Vol. 1, 1995, pp. 87-98.
- 7. Sreekala, M. S. and Thomas, S., J. Appl. Polym. Sci. (Communicated).
- 8. McCullough, R. L., Peterson, J. M., "Developments in Composite Materials", Holister, G. S., Ed., Applied Science Publishers, London, 1977.
- 9. Pothan, L. A., Thomas, S. and Neelakantan, N. R., Journal of Reinforced Plastics and Composites, Vol. 16, No. 8, 1997.
- 10. Short, D. and Summerscales, J., "Fibre Composite Hybrid Materials", Hancox, Ed., Applied Science Publishers, London, 1981.
- Keith, D. Jones and Anthony, T. DeBenedetto, Composites Science and Technology, Vol. 51, 1994.
- 12. Fischer, S., Marom, G. and Tuler, F. R., Journal of Material Science, Vol. 14, 1979, pp. 863-868.
- 13. Bader, M. G. and Manders, P. W., "Hybrid Fibre and Fibre Particulate Reinforced Thermosets", SRC, University of Surrey, U. K., 1978.
- 14. Mallick and Brouturan, L. J., J. Test. Eval., Vol. 5, 1977, pp. 190-200.
- 15. Short, D. and Summerscales, J., Composites, Vol. 10, 1979, p. 215; Vol. 11, 1980, p. 33.
- 16. Harris, B. and Bunsell, A. R., Composites, Vol. 6, 1975, pp. 197-201.