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A floating-point unit (FPU) colloquially is a 

math coprocessor, which is a part of a computer 

system specially designed to carry out operations on 

floating point numbers [1]. Typical operations that 

are handled by FPU are addition, subtraction, 

multiplication and division. The aim was to build an 

efficient FPU that performs basic as well as 

transcendental functions with reduced complexity 

of the logic used reduced or at least comparable 

time bounds as those of x87 family at similar clock 

speed and reduced the memory requirement as far 

as possible. The functions performed are handling 

of Floating-Point data, converting data to IEEE754 

format, perform any one of the following arithmetic 

operations like addition, subtraction, 

multiplication, division and shift operation and 

transcendental operations like square Root, sine of 

an angle and cosine of an angle. All the above 

algorithms have been clocked and evaluated under 

Spartan 3E Synthesis environment. All the 

functions are built by possible efficient algorithms 

with several changes incorporated at our end as far 

as the scope permitted. Consequently, all of the unit 

functions are unique in certain aspects and given 

the right environment (in terms of higher memory 

or say clock speed or data width better than the 

FPGA Spartan 3E Synthesizing environment) these 

functions will tend to show comparable efficiency 

and speed, and if pipelined then higher throughput. 

. The booth-2 algorithm is used for the encoding 

operation, and the Wallace tree structure is used to 

complete the accumulation of partial products. A 

32-bit single precision floating-point multiplier 

based on IEEE754 standard is designed. The 

multiplier can be used as the basic structure of 

hardware multiplier to accelerate Convolutional 

Neural Networks algorithm.  

Index Terms: 

Dadda, Floating Point, Multiplier, FPGA and Carry 

Save Multiplier.Dadda, Floating Point, Multiplier, 

FPGA and Carry Save Multiplier. 

I. INTRODUCTION 

Floating-point units (FPU) colloquially are a 

math coprocessor which is designed specially to 

carry out operations on floating point numbers [1]. 

Typically, FPUs can handle operations like addition, 

subtraction, multiplication and division. FPUs can 

also perform various transcendental functions such 

as exponential or trigonometric calculations, though 

these are done with software library routines in most 

modern processors. Our FPU is basically a single 

precision IEEE754 compliant integrated unit. In this 

chapter we have basically introduced the basic 

concept of what an FPU is, in the section 1.2. 

Following the section, we have given a brief 

introduction to the IEEE 754standards in section 1.3. 

After describing the IEEE 754 standards, we have 

explained the motivation and objective behind this 

project in section 1.4. And finally, the section 

1.5contains the summary of the chapter.  

FLOATING POINT UNIT 

When a CPU executes a program that is 

calling for a floating-point (FP) operation, there are 

three ways by which it can carry out the operation. 

Firstly, it may call a floating-point unit emulator, 

which is a floating-point library, using a series of 

simple fixed-point arithmetic operations which can 

run on the integer ALU. These emulators can save 

the added hardware cost of a FPU but are 

significantly slow. Secondly, it may use an add-on 

FPUs that are entirely separate from the CPU, and are 

typically sold as an optional add-on which are 

purchased only when they are needed to speed up 

math-intensive operations. Else it may use integrated 

FPU present in the system [2]. The FPU designed by 

us is a single precision IEEE754 compliant 

integrated unit. It can handle not only basic floating-

point operations like addition, subtraction, 

multiplication and division but can also handle 

operations like shifting, square root determination 

and other transcendental functions like sine, cosine 

and tangential function.  

IEEE 754 STANDARDS  

IEEE754 standard is a technical standard 

established by IEEE and the most widely used 

standard for floating-point computation, followed by 

many hardware (CPU and FPU) andsoftware 
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implementations [3]. Single-precision floating-point 

format is a computer number format that occupies 32 

bits in a computer memory and represents a wide 

dynamic range of values by using a floating point. In 

IEEE 754-2008, the 32- bit with base 2 format is 

officially referred to as single precision or binary32. 

It was called single in IEEE 754-1985. The IEEE 754 

standard specifies a single precision number as 

having sign bit which is of 1 bit length, an exponent 

of width 8 bits and a significant precision of 24 bits 

out of which 23 bits are explicitly stored and 1 bit is 

implicit 1. Sign bit determines the sign of the number 

where 0 denotes a positive number and 1 denotes a 

negative number. It is the sign of the mantissa as 

well. Exponent is an 8 bit signed integer from −128 

to 127 (2's Complement) or can be an 8 bit unsigned 

integer from 0 to 255 which is the accepted biased 

form in IEEE 754 single precision definition. In this 

case an exponent with value 127 represents actual 

zero. The true mantissa includes 23 fraction bits to 

the right of the binary point and an implicit leading 

bit (to the left of the binary point) with value 1 unless 

the exponent is stored with all zeros. Thus only 23 

fraction bits of the mantissa appear in the memory 

format but the total precision is 24 bits.  

For example:  

S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF  

31 30            23 22                                           0  

IEEE754 also defines certain formats which are a set 

of representation of numerical values and symbols. It 

may also include how the sets are encoded. The 

standard defines [4]:  

 Arithmetic formats which are sets of binary and 

decimal floating-point numbers, which consists of 

finite numbers including subnormal number and 

signed zero, a special value called "not a number” 

(NaN) and infinity.  

 Interchange formats which are bit strings 

(encodings) that are used to exchange a floating-

point data in a compact and efficient form.  

 Rounding rules which are the properties that should 

be satisfied while doing arithmetic operations and 

conversions of any numbers on arithmetic formats.  

 Exception handling which indicates any 

exceptional conditions (like division by zero, 

underflow, overflow, etc.) occurred during the 

operations. The standard defines the following five 

rounding rules:  

 Round to the nearest even which rounds to the 

nearest value with an even (zero) least significant bit. 

 Round to the nearest odd which rounds to the 

nearest value above (for positive numbers) or below 

(for negative numbers)  

 Round towards positive infinity which is a 

rounding directly towards a positive infinity and it is 

also called rounding up or ceiling.  

 Round towards negative infinity which is rounding 

directly towards a negative infinity and it is also 

called rounding down or floor or truncation. The 

standard also defines five exceptions, and all of them 

return a default value. They all have a corresponding 

status flag which are raised when any exception 

occurs, except in certain cases of underflow. The five 

possible exceptions are:  

 Invalid operation are like square root of a negative 

number, returning of qNaN by default, etc., output of 

which does not exist.  

 Division by zero is an operation on a finite operand 

which gives an exact infinite result for e.g., 1/0 or log 

(0) that returns positive or negative infinity by 

default.  

 Overflow occurs when an operation results a very 

large number that can’t be represented correctly i.e. 

which returns ±infinity by default (for round-to 

nearest mode).  

 Underflow occurs when an operation results very 

small i.e. outside the normal range and inexact 

(denormalised value) by default.  

 Inexact occurs when any operation returns 

correctly rounded result by default. 

II. LITERATURE REVIEW 

When a CPU is executing a program that calls for 

a FP operation, a separate FPU is called to carry out 

the operation. So, the efficiency of the FPU is of 

great importance. Though, not many have had great 

achievements in this field, but the work by the 

following two are appreciable. Open Floating-Point 

Unit – This was the open-source project done by 
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Rudolf Usselmann [6]. His FPU described a single 

precision floating point unit which could perform 

add, subtract, multiply, divide, and conversion 

between FP number and integer.  

It consists of two pre-normalization units that can 

adjust the mantissa as well as the exponents of the 

given numbers, one for addition/subtraction and the 

other for multiplication/division operations. It also 

has a shared post normalization unit that normalizes 

the fraction part. The final result after post-

normalization is directed to a valid result which is in 

accordance to single precision FP format. The main 

drawback of this model was that most of the codes 

were written in MATLAB and due to this it is non-

synthesizable. GRFPU –This high Performance 

IEEE754 FPU was designed at Gaisler Research for 

the improvement of FP operations of a LEON based 

systems [7].  

It supports both single precision and double 

precision operands. It implements all FP operations 

defined by the IEEE754 standard in hardware. All 

operations are dealt with the exception of 

denormalized numbers which are flushed to zero and 

supports all rounding modes. This advanced design 

combines low latency and high throughput. The most 

common operations such as addition, subtraction and 

multiplication are fully pipelined which has 

throughput of one CC and a latency of three CC. 

More complex divide and square root operation takes 

between 1 to 24 CC to complete and execute in 

parallel with other FP operations. It can also perform 

operations like converse and compliment. It supports 

all SPARC V8 FP instructions. The main drawback 

of this model is that it is very expensive and complex 

to implement practically. 

III. PROPOSED METHOD 

A transcendental function is a function whose 

coefficients are themselves polynomials and which 

does not satisfy any polynomial equation. In other 

words, it is a function that transcends the algebra in 

the sense that it is not able to express itself in terms 

of any finite sequence of the algebraic operations like 

addition, multiplication, and root extraction. 

Examples of this function may include the 

exponential function, the logarithm, and the 

trigonometric functions. In the approach of 

developing an efficient FPU, we have tried to 

implement some transcendental functions such as 

sine function, cosine and tangential functions. The 

operation involves usage of large memory storage, 

has large number of clock cycles and needs 

expensive hardware organization. To reduce the 

effect of the above-mentioned disadvantages, we 

have implemented CORDIC algorithm [13].  

It is an effective algorithm to be used in our FPU 

as it can fulfil the requirements of rotating a real and 

an imaginary pair of a numbers at any angle and uses 

only bit-shift operations and additions and 

subtractions operation to compute any functions. 

Section 3 describes the efficient trigonometric 

algorithm using the CORDIC algorithm and brief 

introduction about the CORDIC function. The 

section further, describes the efficient trigonometric 

algorithm that was improvised to improve the 

operations of the FPU. 

EFFICIENT TRIGONOMETRIC 

ALGORITHM 

Evaluation of trigonometric value viz. sine, 

cosine and tangent is generally a complex operation 

which requires a lot of memory, has complex 

algorithms, and requires large number of clock 

cycles with expensive hardware organization. So 

usually it is implemented in terms of libraries. But 

the algorithm that we use here is absolutely simple, 

with very low memory requirements, faster 

calculation and commendable precision which use 

only bit-shift operations and additions and 

subtractions operation to compute any functions.  

CORDIC FUNCTION  

CORDIC (Co-ordinate Rotation Digital Computer 

algorithm) is a hardware efficient algorithm [14]. It 

is iterative in nature and is implemented in terms of 

Rotation Matrix. It can perform a rotation with the 

help of a series of incremental rotation angles each of 

which is performed by a shift and add/sub operation. 

The basic ideas that is incorporated is that –  

 It embeds elementary function calculation as a 

generalized rotation step.  

 Uses incremental rotation angles.  

 Each of these basic rotation is performed by shift 

or and/sub operation Principles of calculation in 

figure 2 –  
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 If we rotate point (1,0) by angle Ø then the 

coordinates say (X,Y) will beX= cos Ø and Y= sin Ø 

Ø and Y= sin Ø  

 Now if we rotate (X.Y) we get say (X´, Y´), then it 

is expressed as X´= X.cos Ø – Y.sin Ø Y´= Y.cos Ø 

+ X.sin Ø  

 Rearranging the sameX´= cos Ø [X – Y. tan Ø] 

Floating point multiplication is a crucial operation in 

high power computing applications such as image 

processing, signal processing etc. And also, 

multiplication is the most time and power consuming 

operation. This paper proposes an efficient method 

for IEEE 754 floating point multiplication which 

gives a better implementation in terms of delay and 

power. 

 

Figure1 Floating point multiplier 

 

Figure 2 Cordic Angle Determination 

Y´= cos Ø [Y + X. tan Ø] Where tan is 

calculated as steps tan Ø = ± 2-I The figure 2 

describes the determination of the rotation angle by 

which the angles are determined to evaluate the 

trigonometric functions. The angle β used in the 

diagram is same as the angle Ø in the equations. So, 

basically CORDIC is an efficient algorithm where 

we would not prefer use of a hardware-based 

multiplier and we intend to save gates as in FPGA. 

Now, since our conventional input is in degrees, we 

built a look-up table in degrees. We are working 

towards a 12-bit precision structure. Moreover, since 

all our floating-point numbers have been converted 

to integers thus, we satisfy the criteria of fixed-point 

format. But since our calculations are all integer 

based, we need a look-up table that is integral in 

nature. So, we multiply the values in table by a value 

= 2048 (= 2 11 as we need a precision of 12 bits). 

Soour look-up table 1 is as follows- 

 

Table 1 Look Up Table 

We will assume a 12-step system so that it will yield 

12 bits of accuracy in the final answer. Note that the 

Cos Ø constant for a 12-step algorithm is 0.60725. 

We also assume that the 12 values of Atan (1/2i ) 

have been calculated before run time and stored 

along with the rest of the algorithm. If true FP 

operations are used then the shift operations must be 

modified to divide by 2 operations.  
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INITIAL APPROACH:  

The initialization specifies the total angle of rotation 

and sets the initial value of the point at(1,0) and 

multiplied by the constant 0.60725.  

 Set register A to the desired angle.  

 Set register Y to value 0  

 Set register X to value 0.60725 

 

Figure 3 Algorithm for CORDIC 

The Sine of the desired angle is now present 

in the variable Y and the Cosine of the desired angle 

is in the variable X. This algorithm requires the use 

of non-integral numbers. This presents certain 

inconvenience so the algorithm is modified to work 

with only integral numbers. The modified algorithm 

is given below. As we have been working with an 

algorithm using 12 bits, our output angle ranges from 

–2048 to +2047. So, we will have to assume 16-bit 

calculations throughout. 

EFFICIENT CORDIC IMPLEMENTATION 

  Set register A to the desired angle*2048  

 Set register Y to value 0  

 Set register X to the value of 0.60725*2048  

 Setup the lookup table to contain 2048*Atan (1/2i 

)  

COMPUTATION  

The algorithm in figure 4 is described below. Do the 

following  

 

 

The Sine of the desired angle is now present in the 

variable Y and the Cosine of the desired angle is in 

the variable X. These outputs are within the integer 

range – 2048 to +2047. 

IV. RESULTS AND DISCUSSION 

In this chapter we analyse the results of simulation, 

RTL results and synthesis results for all the 

algorithms that we have implemented in our FPU. 
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Then we compared the performance of our FPU to 

that of X87 family at similar clock speed. The 

synthesis was done in FPGA Spartan 3E 

Synthesizing Environment. The comparison is done 

with respect to  

 Memory Requirement  

 Gates Used  

 Clock Cycle  

 Complexity of the logic  

SIMULATION RESULTS  

The code was simulated in Xilinx 14.7. We have 

given some of the screen shots of the simulations that 

were obtained as a result of simulation in Xilinx 

software.  

FLOAT TO INTEGER CONVERSION 

 

Figure 5 Float to Integer Conversion simulation 

result 

The figure 5 gives the simulation result of float to 

integer conversion. The inputs are two 32bit 

operands, one for integral part and the other is 

fractional part. The output is the novel integral form 

of the input operands.  

ADDITION 

 

Figure 6 ADD simulation result 

Figure 6 shows the simulation result of integer to 

IEEE format conversion. The input is the integer 

operand which was the output of the binary to integer 

representation conversion. The output is the IEEE 

representation of the input operand. The round mode 

is 00 and the operation mode is 0000. 

SUBTRACTION 

 

Figure 7 SUB simulation result 

Figure 7 shows the simulation result for the 

subtraction operation. The input is the operands in 

the IEEE format and the output shows the resultant 

of the subtraction operation. The result also shows 

any exception encountered during the operation. The 

rounding mode is 00 and the operation mode is 0001.  

MULTIPLICATION 
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Figure 8 Multiplication simulation result 

Figure 8 shows the simulation result for the 

multiplication operation. The input is the operands in 

the IEEE format and the output shows the resultant 

of the multiplication operation. The result also shows 

any exception encountered during the operation. The 

rounding mode is 00 and the operation mode is 0010. 

DIVISION 

 

Figure 9 Division simulation result 

Figure 9 shows the simulation result for the division 

operation. The input is the operands in the IEEE 

format and the output shows the resultant of the 

division operation. The result also shows any 

exception encountered during the operation. The 

rounding mode is 00 and the operation mode is 0100.  

SHIFTING 

 

Figure 10 Shifting simulation result 

 Figure 10 shows the simulation result for the shifting 

operation. The input is the operands in the IEEE 

format and the output shows the resultant of the 

shifting operation. The result also shows any 

exception encountered during the operation. The 

rounding mode is 00. 

SQUARE ROOT DETERMINATION 

 

Figure 11 Square root simulation result  

Figure 11 shows the simulation result for the square 

root determination operation. The input is the 

operands in the IEEE format and the output shows 

the resultant of the square root operation. The result 

also shows any exception encountered during the 

operation. The rounding mode is 00 and the operation 

mode is 0011.  

TRIGONOMETRIC EVALUATION 

 

Figure 12 Trigonometric simulation result 

Figure 12 shows the simulation result for the 

trigonometric operation. The input is the operands in 

the IEEE format and the output shows the resultant 

of the trigonometric operation. The result also shows 

any exception encountered during the operation. The 

rounding mode is 00 and the operation mode is 0110. 

SYNTHESIS RESULTS  
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After the simulation of the code was successful, we 

proceeded for the synthesis analysis. The simulation 

results gave a detailed description of the memory 

usage of the operation, i.e., the total number of 

registers required, total gates used, total 

multiplexers, LUTs, adders/subtractors, latches, 

comparator, flip--flops used. It also gives a detailed 

description of the device utilization summary, and 

detailed timing report which consists of time 

summary, timing constraints and delay. These details 

of the initial algorithm used which were discussed in 

chapter 2 were compared with that of the efficient 

algorithms discussed in chapter 3 and found that the 

efficient algorithms used less registers and gates. 

Number of IOs used was less in efficient algorithms 

and the delay were reduced too. For an example in 

table 2, the addition algorithm which was 

implemented using block CLA adder with reduced 

fan-in was using less number of gates and registers 

than used by normal block CLA and delay was also 

reduced in CLA with reduced fan-in. 

 

Table 2 Block CLA Vs. Block CLA with reduced 

fan-in 

The synthesis report shows that the CLA with 

reduced fan-in is much more efficient than the 

normal CLA block algorithm. Thus proving the 

efficiency of the FPU designed. According to the 

simulation and synthesis results, we have compared 

the performance of our FPU with that of X87 family 

(PENTIUM/MMX). The following table 3 shows the 

result of comparison. 

 

Table 3 OUR FPU Vs. PENTIUM/MMX 

V. CONCLUSION 

We have proved in the last chapter that the 

performance of our FPU was comparable to that of 

the X87 family (PENTIUM/MMX). The algorithm 

that we have used for the final FPU was comparable 

or even better in some case than the already existing 

efficient algorithms likein the case of block CLA and 

CLA with reduced fan-in in terms of memory used, 

delay, and device utilization. Because we have built 

the FPU using possible efficient algorithms with 

several changes incorporated at our ends as far as the 

scope permitted, all the unit functions are unique in 

certain aspects and given the right environment (in 

terms of higher memory or clock speed or data width 

better than the FPGA Spartan 3E synthesizing 

environment), these functions will tend to show 

comparable efficiency and speed and if pipelined 

then higher throughput may be obtained.  

FUTURE WORK  

Tough we have succeeded to achieve small 

amount of success in improvising the FPU, i.e. as per 

the results of synthesis and simulation, we have 

proved that our FPU have less memory requirement, 

less delay, comparable clock cycle and low code 

complexity, but still we have a vast amount of work 

that can be put on this FPU to further improvise the 

efficiency of the FPU. We can further implement 

operations like Exponential functions and 

Logarithmic functions. Further implementing 

Pipelining for the above operations can further 

increase the efficiency of the FPU. We also can 

encompass further exception logics like snan, qnan, 

ine, etc. We can also implement the FPU in Double 

precision format. Further, this code can serve as a 

skeleton for development of fault tolerant FPU at an 

exceedingly higher level.  
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