
Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-12 Issue-05 No. 01 May 2022

Page | 763 Copyright @ 2022 Author

A Single Precision Floating Point Multiplier for Machine Learning Hardware

Acceleration
Devadasu Keerthana 1, M.Tech Research Scholar, Dept. of ECE, Eluru College of Engineering and Technology, JNTUK, AP

N. Chandra Paul 2, Assistant Professor, M.Tech, Dept. of ECE, Eluru College of Engineering and Technology, JNTUK, AP

A floating-point unit (FPU) colloquially is a

math coprocessor, which is a part of a computer

system specially designed to carry out operations on

floating point numbers [1]. Typical operations that

are handled by FPU are addition, subtraction,

multiplication and division. The aim was to build an

efficient FPU that performs basic as well as

transcendental functions with reduced complexity

of the logic used reduced or at least comparable

time bounds as those of x87 family at similar clock

speed and reduced the memory requirement as far

as possible. The functions performed are handling

of Floating-Point data, converting data to IEEE754

format, perform any one of the following arithmetic

operations like addition, subtraction,

multiplication, division and shift operation and

transcendental operations like square Root, sine of

an angle and cosine of an angle. All the above

algorithms have been clocked and evaluated under

Spartan 3E Synthesis environment. All the

functions are built by possible efficient algorithms

with several changes incorporated at our end as far

as the scope permitted. Consequently, all of the unit

functions are unique in certain aspects and given

the right environment (in terms of higher memory

or say clock speed or data width better than the

FPGA Spartan 3E Synthesizing environment) these

functions will tend to show comparable efficiency

and speed, and if pipelined then higher throughput.

. The booth-2 algorithm is used for the encoding

operation, and the Wallace tree structure is used to

complete the accumulation of partial products. A

32-bit single precision floating-point multiplier

based on IEEE754 standard is designed. The

multiplier can be used as the basic structure of

hardware multiplier to accelerate Convolutional

Neural Networks algorithm.

Index Terms:

Dadda, Floating Point, Multiplier, FPGA and Carry

Save Multiplier.Dadda, Floating Point, Multiplier,

FPGA and Carry Save Multiplier.

I. INTRODUCTION

Floating-point units (FPU) colloquially are a

math coprocessor which is designed specially to

carry out operations on floating point numbers [1].

Typically, FPUs can handle operations like addition,

subtraction, multiplication and division. FPUs can

also perform various transcendental functions such

as exponential or trigonometric calculations, though

these are done with software library routines in most

modern processors. Our FPU is basically a single

precision IEEE754 compliant integrated unit. In this

chapter we have basically introduced the basic

concept of what an FPU is, in the section 1.2.

Following the section, we have given a brief

introduction to the IEEE 754standards in section 1.3.

After describing the IEEE 754 standards, we have

explained the motivation and objective behind this

project in section 1.4. And finally, the section

1.5contains the summary of the chapter.

FLOATING POINT UNIT

When a CPU executes a program that is

calling for a floating-point (FP) operation, there are

three ways by which it can carry out the operation.

Firstly, it may call a floating-point unit emulator,

which is a floating-point library, using a series of

simple fixed-point arithmetic operations which can

run on the integer ALU. These emulators can save

the added hardware cost of a FPU but are

significantly slow. Secondly, it may use an add-on

FPUs that are entirely separate from the CPU, and are

typically sold as an optional add-on which are

purchased only when they are needed to speed up

math-intensive operations. Else it may use integrated

FPU present in the system [2]. The FPU designed by

us is a single precision IEEE754 compliant

integrated unit. It can handle not only basic floating-

point operations like addition, subtraction,

multiplication and division but can also handle

operations like shifting, square root determination

and other transcendental functions like sine, cosine

and tangential function.

IEEE 754 STANDARDS

IEEE754 standard is a technical standard

established by IEEE and the most widely used

standard for floating-point computation, followed by

many hardware (CPU and FPU) andsoftware

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-12 Issue-05 No. 01 May 2022

Page | 764 Copyright @ 2022 Author

implementations [3]. Single-precision floating-point

format is a computer number format that occupies 32

bits in a computer memory and represents a wide

dynamic range of values by using a floating point. In

IEEE 754-2008, the 32- bit with base 2 format is

officially referred to as single precision or binary32.

It was called single in IEEE 754-1985. The IEEE 754

standard specifies a single precision number as

having sign bit which is of 1 bit length, an exponent

of width 8 bits and a significant precision of 24 bits

out of which 23 bits are explicitly stored and 1 bit is

implicit 1. Sign bit determines the sign of the number

where 0 denotes a positive number and 1 denotes a

negative number. It is the sign of the mantissa as

well. Exponent is an 8 bit signed integer from −128

to 127 (2's Complement) or can be an 8 bit unsigned

integer from 0 to 255 which is the accepted biased

form in IEEE 754 single precision definition. In this

case an exponent with value 127 represents actual

zero. The true mantissa includes 23 fraction bits to

the right of the binary point and an implicit leading

bit (to the left of the binary point) with value 1 unless

the exponent is stored with all zeros. Thus only 23

fraction bits of the mantissa appear in the memory

format but the total precision is 24 bits.

For example:

S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF

31 30 23 22 0

IEEE754 also defines certain formats which are a set

of representation of numerical values and symbols. It

may also include how the sets are encoded. The

standard defines [4]:

 Arithmetic formats which are sets of binary and

decimal floating-point numbers, which consists of

finite numbers including subnormal number and

signed zero, a special value called "not a number”

(NaN) and infinity.

 Interchange formats which are bit strings

(encodings) that are used to exchange a floating-

point data in a compact and efficient form.

 Rounding rules which are the properties that should

be satisfied while doing arithmetic operations and

conversions of any numbers on arithmetic formats.

 Exception handling which indicates any

exceptional conditions (like division by zero,

underflow, overflow, etc.) occurred during the

operations. The standard defines the following five

rounding rules:

 Round to the nearest even which rounds to the

nearest value with an even (zero) least significant bit.

 Round to the nearest odd which rounds to the

nearest value above (for positive numbers) or below

(for negative numbers)

 Round towards positive infinity which is a

rounding directly towards a positive infinity and it is

also called rounding up or ceiling.

 Round towards negative infinity which is rounding

directly towards a negative infinity and it is also

called rounding down or floor or truncation. The

standard also defines five exceptions, and all of them

return a default value. They all have a corresponding

status flag which are raised when any exception

occurs, except in certain cases of underflow. The five

possible exceptions are:

 Invalid operation are like square root of a negative

number, returning of qNaN by default, etc., output of

which does not exist.

 Division by zero is an operation on a finite operand

which gives an exact infinite result for e.g., 1/0 or log

(0) that returns positive or negative infinity by

default.

 Overflow occurs when an operation results a very

large number that can’t be represented correctly i.e.

which returns ±infinity by default (for round-to

nearest mode).

 Underflow occurs when an operation results very

small i.e. outside the normal range and inexact

(denormalised value) by default.

 Inexact occurs when any operation returns

correctly rounded result by default.

II. LITERATURE REVIEW

When a CPU is executing a program that calls for

a FP operation, a separate FPU is called to carry out

the operation. So, the efficiency of the FPU is of

great importance. Though, not many have had great

achievements in this field, but the work by the

following two are appreciable. Open Floating-Point

Unit – This was the open-source project done by

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-12 Issue-05 No. 01 May 2022

Page | 765 Copyright @ 2022 Author

Rudolf Usselmann [6]. His FPU described a single

precision floating point unit which could perform

add, subtract, multiply, divide, and conversion

between FP number and integer.

It consists of two pre-normalization units that can

adjust the mantissa as well as the exponents of the

given numbers, one for addition/subtraction and the

other for multiplication/division operations. It also

has a shared post normalization unit that normalizes

the fraction part. The final result after post-

normalization is directed to a valid result which is in

accordance to single precision FP format. The main

drawback of this model was that most of the codes

were written in MATLAB and due to this it is non-

synthesizable. GRFPU –This high Performance

IEEE754 FPU was designed at Gaisler Research for

the improvement of FP operations of a LEON based

systems [7].

It supports both single precision and double

precision operands. It implements all FP operations

defined by the IEEE754 standard in hardware. All

operations are dealt with the exception of

denormalized numbers which are flushed to zero and

supports all rounding modes. This advanced design

combines low latency and high throughput. The most

common operations such as addition, subtraction and

multiplication are fully pipelined which has

throughput of one CC and a latency of three CC.

More complex divide and square root operation takes

between 1 to 24 CC to complete and execute in

parallel with other FP operations. It can also perform

operations like converse and compliment. It supports

all SPARC V8 FP instructions. The main drawback

of this model is that it is very expensive and complex

to implement practically.

III. PROPOSED METHOD

A transcendental function is a function whose

coefficients are themselves polynomials and which

does not satisfy any polynomial equation. In other

words, it is a function that transcends the algebra in

the sense that it is not able to express itself in terms

of any finite sequence of the algebraic operations like

addition, multiplication, and root extraction.

Examples of this function may include the

exponential function, the logarithm, and the

trigonometric functions. In the approach of

developing an efficient FPU, we have tried to

implement some transcendental functions such as

sine function, cosine and tangential functions. The

operation involves usage of large memory storage,

has large number of clock cycles and needs

expensive hardware organization. To reduce the

effect of the above-mentioned disadvantages, we

have implemented CORDIC algorithm [13].

It is an effective algorithm to be used in our FPU

as it can fulfil the requirements of rotating a real and

an imaginary pair of a numbers at any angle and uses

only bit-shift operations and additions and

subtractions operation to compute any functions.

Section 3 describes the efficient trigonometric

algorithm using the CORDIC algorithm and brief

introduction about the CORDIC function. The

section further, describes the efficient trigonometric

algorithm that was improvised to improve the

operations of the FPU.

EFFICIENT TRIGONOMETRIC

ALGORITHM

Evaluation of trigonometric value viz. sine,

cosine and tangent is generally a complex operation

which requires a lot of memory, has complex

algorithms, and requires large number of clock

cycles with expensive hardware organization. So

usually it is implemented in terms of libraries. But

the algorithm that we use here is absolutely simple,

with very low memory requirements, faster

calculation and commendable precision which use

only bit-shift operations and additions and

subtractions operation to compute any functions.

CORDIC FUNCTION

CORDIC (Co-ordinate Rotation Digital Computer

algorithm) is a hardware efficient algorithm [14]. It

is iterative in nature and is implemented in terms of

Rotation Matrix. It can perform a rotation with the

help of a series of incremental rotation angles each of

which is performed by a shift and add/sub operation.

The basic ideas that is incorporated is that –

 It embeds elementary function calculation as a

generalized rotation step.

 Uses incremental rotation angles.

 Each of these basic rotation is performed by shift

or and/sub operation Principles of calculation in

figure 2 –

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-12 Issue-05 No. 01 May 2022

Page | 766 Copyright @ 2022 Author

 If we rotate point (1,0) by angle Ø then the

coordinates say (X,Y) will beX= cos Ø and Y= sin Ø

Ø and Y= sin Ø

 Now if we rotate (X.Y) we get say (X´, Y´), then it

is expressed as X´= X.cos Ø – Y.sin Ø Y´= Y.cos Ø

+ X.sin Ø

 Rearranging the sameX´= cos Ø [X – Y. tan Ø]

Floating point multiplication is a crucial operation in

high power computing applications such as image

processing, signal processing etc. And also,

multiplication is the most time and power consuming

operation. This paper proposes an efficient method

for IEEE 754 floating point multiplication which

gives a better implementation in terms of delay and

power.

Figure1 Floating point multiplier

Figure 2 Cordic Angle Determination

Y´= cos Ø [Y + X. tan Ø] Where tan is

calculated as steps tan Ø = ± 2-I The figure 2

describes the determination of the rotation angle by

which the angles are determined to evaluate the

trigonometric functions. The angle β used in the

diagram is same as the angle Ø in the equations. So,

basically CORDIC is an efficient algorithm where

we would not prefer use of a hardware-based

multiplier and we intend to save gates as in FPGA.

Now, since our conventional input is in degrees, we

built a look-up table in degrees. We are working

towards a 12-bit precision structure. Moreover, since

all our floating-point numbers have been converted

to integers thus, we satisfy the criteria of fixed-point

format. But since our calculations are all integer

based, we need a look-up table that is integral in

nature. So, we multiply the values in table by a value

= 2048 (= 2 11 as we need a precision of 12 bits).

Soour look-up table 1 is as follows-

Table 1 Look Up Table

We will assume a 12-step system so that it will yield

12 bits of accuracy in the final answer. Note that the

Cos Ø constant for a 12-step algorithm is 0.60725.

We also assume that the 12 values of Atan (1/2i)

have been calculated before run time and stored

along with the rest of the algorithm. If true FP

operations are used then the shift operations must be

modified to divide by 2 operations.

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-12 Issue-05 No. 01 May 2022

Page | 767 Copyright @ 2022 Author

INITIAL APPROACH:

The initialization specifies the total angle of rotation

and sets the initial value of the point at(1,0) and

multiplied by the constant 0.60725.

 Set register A to the desired angle.

 Set register Y to value 0

 Set register X to value 0.60725

Figure 3 Algorithm for CORDIC

The Sine of the desired angle is now present

in the variable Y and the Cosine of the desired angle

is in the variable X. This algorithm requires the use

of non-integral numbers. This presents certain

inconvenience so the algorithm is modified to work

with only integral numbers. The modified algorithm

is given below. As we have been working with an

algorithm using 12 bits, our output angle ranges from

–2048 to +2047. So, we will have to assume 16-bit

calculations throughout.

EFFICIENT CORDIC IMPLEMENTATION

 Set register A to the desired angle*2048

 Set register Y to value 0

 Set register X to the value of 0.60725*2048

 Setup the lookup table to contain 2048*Atan (1/2i

)

COMPUTATION

The algorithm in figure 4 is described below. Do the

following

The Sine of the desired angle is now present in the

variable Y and the Cosine of the desired angle is in

the variable X. These outputs are within the integer

range – 2048 to +2047.

IV. RESULTS AND DISCUSSION

In this chapter we analyse the results of simulation,

RTL results and synthesis results for all the

algorithms that we have implemented in our FPU.

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-12 Issue-05 No. 01 May 2022

Page | 768 Copyright @ 2022 Author

Then we compared the performance of our FPU to

that of X87 family at similar clock speed. The

synthesis was done in FPGA Spartan 3E

Synthesizing Environment. The comparison is done

with respect to

 Memory Requirement

 Gates Used

 Clock Cycle

 Complexity of the logic

SIMULATION RESULTS

The code was simulated in Xilinx 14.7. We have

given some of the screen shots of the simulations that

were obtained as a result of simulation in Xilinx

software.

FLOAT TO INTEGER CONVERSION

Figure 5 Float to Integer Conversion simulation

result

The figure 5 gives the simulation result of float to

integer conversion. The inputs are two 32bit

operands, one for integral part and the other is

fractional part. The output is the novel integral form

of the input operands.

ADDITION

Figure 6 ADD simulation result

Figure 6 shows the simulation result of integer to

IEEE format conversion. The input is the integer

operand which was the output of the binary to integer

representation conversion. The output is the IEEE

representation of the input operand. The round mode

is 00 and the operation mode is 0000.

SUBTRACTION

Figure 7 SUB simulation result

Figure 7 shows the simulation result for the

subtraction operation. The input is the operands in

the IEEE format and the output shows the resultant

of the subtraction operation. The result also shows

any exception encountered during the operation. The

rounding mode is 00 and the operation mode is 0001.

MULTIPLICATION

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-12 Issue-05 No. 01 May 2022

Page | 769 Copyright @ 2022 Author

Figure 8 Multiplication simulation result

Figure 8 shows the simulation result for the

multiplication operation. The input is the operands in

the IEEE format and the output shows the resultant

of the multiplication operation. The result also shows

any exception encountered during the operation. The

rounding mode is 00 and the operation mode is 0010.

DIVISION

Figure 9 Division simulation result

Figure 9 shows the simulation result for the division

operation. The input is the operands in the IEEE

format and the output shows the resultant of the

division operation. The result also shows any

exception encountered during the operation. The

rounding mode is 00 and the operation mode is 0100.

SHIFTING

Figure 10 Shifting simulation result

 Figure 10 shows the simulation result for the shifting

operation. The input is the operands in the IEEE

format and the output shows the resultant of the

shifting operation. The result also shows any

exception encountered during the operation. The

rounding mode is 00.

SQUARE ROOT DETERMINATION

Figure 11 Square root simulation result

Figure 11 shows the simulation result for the square

root determination operation. The input is the

operands in the IEEE format and the output shows

the resultant of the square root operation. The result

also shows any exception encountered during the

operation. The rounding mode is 00 and the operation

mode is 0011.

TRIGONOMETRIC EVALUATION

Figure 12 Trigonometric simulation result

Figure 12 shows the simulation result for the

trigonometric operation. The input is the operands in

the IEEE format and the output shows the resultant

of the trigonometric operation. The result also shows

any exception encountered during the operation. The

rounding mode is 00 and the operation mode is 0110.

SYNTHESIS RESULTS

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-12 Issue-05 No. 01 May 2022

Page | 770 Copyright @ 2022 Author

After the simulation of the code was successful, we

proceeded for the synthesis analysis. The simulation

results gave a detailed description of the memory

usage of the operation, i.e., the total number of

registers required, total gates used, total

multiplexers, LUTs, adders/subtractors, latches,

comparator, flip--flops used. It also gives a detailed

description of the device utilization summary, and

detailed timing report which consists of time

summary, timing constraints and delay. These details

of the initial algorithm used which were discussed in

chapter 2 were compared with that of the efficient

algorithms discussed in chapter 3 and found that the

efficient algorithms used less registers and gates.

Number of IOs used was less in efficient algorithms

and the delay were reduced too. For an example in

table 2, the addition algorithm which was

implemented using block CLA adder with reduced

fan-in was using less number of gates and registers

than used by normal block CLA and delay was also

reduced in CLA with reduced fan-in.

Table 2 Block CLA Vs. Block CLA with reduced

fan-in

The synthesis report shows that the CLA with

reduced fan-in is much more efficient than the

normal CLA block algorithm. Thus proving the

efficiency of the FPU designed. According to the

simulation and synthesis results, we have compared

the performance of our FPU with that of X87 family

(PENTIUM/MMX). The following table 3 shows the

result of comparison.

Table 3 OUR FPU Vs. PENTIUM/MMX

V. CONCLUSION

We have proved in the last chapter that the

performance of our FPU was comparable to that of

the X87 family (PENTIUM/MMX). The algorithm

that we have used for the final FPU was comparable

or even better in some case than the already existing

efficient algorithms likein the case of block CLA and

CLA with reduced fan-in in terms of memory used,

delay, and device utilization. Because we have built

the FPU using possible efficient algorithms with

several changes incorporated at our ends as far as the

scope permitted, all the unit functions are unique in

certain aspects and given the right environment (in

terms of higher memory or clock speed or data width

better than the FPGA Spartan 3E synthesizing

environment), these functions will tend to show

comparable efficiency and speed and if pipelined

then higher throughput may be obtained.

FUTURE WORK

Tough we have succeeded to achieve small

amount of success in improvising the FPU, i.e. as per

the results of synthesis and simulation, we have

proved that our FPU have less memory requirement,

less delay, comparable clock cycle and low code

complexity, but still we have a vast amount of work

that can be put on this FPU to further improvise the

efficiency of the FPU. We can further implement

operations like Exponential functions and

Logarithmic functions. Further implementing

Pipelining for the above operations can further

increase the efficiency of the FPU. We also can

encompass further exception logics like snan, qnan,

ine, etc. We can also implement the FPU in Double

precision format. Further, this code can serve as a

skeleton for development of fault tolerant FPU at an

exceedingly higher level.

REFERENCES

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-12 Issue-05 No. 01 May 2022

Page | 771 Copyright @ 2022 Author

[1] Jinwoo Suh, Dong-In Kang, and Stephen P.

Crago, “Efficient Algorithms for Fixed-Point

Arithmetic Operations In An Embedded PIM”,

University of Southern

California/InformationSciences Institute

[2] Christian Jacobi, “Formal Verification of a Fully

IEEE Compliant Floating Point Unit”, April 2002,

Universit¨at des Saarlandes.

[3] Rudolf Usselmann, “Open Floating Point Unit,

The Free IP Cores Projects”.

[4] Edvin Catovic, Revised by: Jan Andersson,

“GRFPU – High Performance IEEE754Floating

Point Unit”, Gaisler Research, Första Långatan 19,

SE413 27 Göteborg, and Sweden

[5] David Goldberg, “What Every Computer

Scientist Should Know About Floating Point

Arithmetic”, ACM Computing Surveys, Vol 23, No

1, March 1991, Xerox Palo Alto Research Center,

3333 Coyote Hill Road, Palo Alto, California 94304

[6] Taek-Jun Kwon, Jeff Sondeen, Jeff Draper,

“Design Trade-Offs in Floating-Point Unit,

Implementation for Embedded and Processing-In-

Memory Systems”, USC Information Sciences

Institute, 4676 Admiralty Way Marina del Rey, CA

90292 U.S.A.

[7] Jinwoo Suh, Dong-In Kang, and Stephen P.

Crago, “Efficient Algorithms for Fixed-Point

Arithmetic Operations In An Embedded PIM”, 2005,

University of SouthernCalifornia/Information

Sciences Institute [8] Yu-Ting Pai and Yu-Kumg

Chen, “The Fastest Carry Lookahead Adder”,

Department of Electronic Engineering, Huafan

University [9] David Narh Amanor, “Efficient

Hardware Architectures for Modular

Multiplication”, Communication and Media

Engineering, February, 2005, University of Applied

Sciences Offenburg, Germany/

[10] Andr¶e Weimerskirch and Christof Paar,

“Generalizations of the Karatsuba Algorithm for

Efficient Implementations”, Communication

Security Group, Department of Electrical

Engineering & Information Sciences, Ruhr-

UniversitÄat Bochum, Germany

[11] Yamin Li and Wanming Chu, “A New Non-

Restoring Square Root Algorithm and Its VLSI

Implementations”, International Conference on

Computer Design (ICCD‟96), October 7–9, 1996,

Austin, Texas, USA

[12] Claude-Pierre Jeannerod, Herv´e nochel,

Christophe Monat, Member, IEEE, and Guillaume

Revy, “Faster floating-point square root for integer

processors”, Laboratoire LIP (CNRS, ENSL, INRIA,

UCBL)

[13] Prof. Kris Gaj, Gaurav, Doshi, Hiren Shah,

“Sine/Cosine using CORDIC Algorithm”

[14] Samuel Ginsberg, “Compact and Efficient

Generation of Trigonometric Functions usinga

CORDIC algorithm”, Cape Town, South Africa

[15] J. Duprat and J. M. Muller, “The CORDIC

Algorithm: New Results for fast

VLSIImplementation”, IEEE Transactions on

Computers, vol. C-42, pp. 168 178, 1993

