
Dogo Rangsang Research Journal UGC Care Group I Journal
ISSN: 2347-7180 Vol-9 Issue-01 2019

1 Copyright @ 2019 Authors

DSP VLSI DESIGNS ARE VERIFIED

` MADDI SOWJANYA, M.Tech Assistant Professor, jillela.sowjanya@gmail.com

2 BURRI NARENDER REDDY, M.Tech Assistant Professor, narendarburri@gmail.com
 3 P NANDA KUMAR M.Tech Assistant Professor, nandha.iarevlsi@gmail.com

4 ANAM SRINIVASA REDDY , M.Tech Assistant Professor, anam.srinivas@gmail.com

Department- ECE

Pallavi Engineering College Hyderabad, Telangana 501505.

Abstract:
Foregg, Digital Signal Processing (DSP) is growing with

sophisticated capabilities in locally accessible space applications,

thanks to the use of Field Programmable Gate Arrays (FPGA)

and Specific Integrated Circuits for Application (ASICs). Proof

of these perplexing systems is being checked inside tiny

timetables and characteristics. It is critical to conduct strict

functional monitoring in order to ensure that these systems

operate reliably in all conceivable run-time scenarios. Even with

the use of cutting-edge Hardware Verification Languages

(HVLs) and approaches such as System-Virology (SV) and

Universal Verification Methodology (UVM), improving a

mechanized self-checking validation state or test seats, including

the age of bit-exact genius reference values, is a complex and

time-consuming task. This article investigates a utilitarian check

method for the DSP-based VLSI setup utilizing SV and Mat lab.

The design of the verify situation, method for integrating Mat lab

with SV-based validation condition, and age of bit-accurate

genius references are continuously examined in detail, in

addition to two contextual investigations.

Keywords: DSP, VLSI, UVM, predictor, coverage-powered

verification, DPI

I. INTRODUCTION

DigitalVLSI designs are becoming more dynamic in

order to meet ever-increasing practical requirements.

Design teams are packing more and more logic gates

onto a single chip in order to provide the necessary

functionality and efficiency within the specified

footprint. Practical testing of such systems using a

traditional approach using guided test benches does

not give sufficient confidence within the time

constraints. In terms of enabling limited generation of

random stimuli, self-checking and assertion-based

verification, as well as defining the useable coverage

matrix, test benches built in SV provide advantages.

Random testing improves performance over manual

testing, reduces the number of test vectors generated,

and produces test cases that the verification engineer

isn't aware of. Binding assertions to a specification at

the simulation level identifies design flaws in real

time and significantly reduces debugging times

compared to non-assertion-based design. The

simulated design's performance is compared to

golden reference values generated using HVL and

verified automatically during runtime. Functional

simulation is considered complete when the goal of

100 percent functional coverage is met. In this SV-

based test bench, assertions are used to verify the

designs' control signals, and a predictor or checker is

used to assess the designs' data processing

capabilities. The verification engineer typically hand-

codes these checks using a higher level of

abstraction. With sophisticated features like DSP,

checker development is difficult. With an onboard

architecture that includes multiple DSP IP cores with

capabilities like sine-cosine lookup table, fixed-to-

floating-point translation, FFT, FIR filter, and so on,

this becomes much more complex. DSP algorithms

are available as standard features in MATLAB. The

test bench can be simplified and overall verification

efficiency can be significantly improved if these jobs

can be utilized as golden reference models/checkers

on the test bench. This article investigates the use of

SV and the Mat lab pairing method with SV to create

a verification environment.

II. Indicator of Authentication Setting

The testing of a VLSI specification is divided into

two stages.

Creating Stimuli is the first step.

2. Research on the design's response

In the step of stimulus production, the architecture is

set in a certain mode, and stimulus is introduced. In

the research portion, the actual verification takes

place. Figure 1 depicts a prototype test bench design

that performs all of these tasks automatically.

Sousing UVM's test bench (verification area) is made

up of reusable verification environment components

known as verification components. Each subsystem is

encapsulated, ready-to-use, and customizable so that

it may be used to test any device protocol, sub

module configuration, or whole framework. The

verification components, in conjunction with the unit

under test (DUT), are used to verify the protocol or

system model's execution.

mailto:jillela.sowjanya@gmail.com
mailto:narendarburri@gmail.com
mailto:nandha.iarevlsi@gmail.com
mailto:anam.srinivas@gmail.com

Dogo Rangsang Research Journal UGC Care Group I Journal
ISSN: 2347-7180 Vol-9 Issue-01 2019

2 Copyright @ 2019 Authors

Figure 1: Verification Environment

The components that examine DUT activities make

up the portion of the research shown in Figure 2. The

research section's main components are coverage

compilation and scoreboards. The Scoreboard

determines whether or not the design is effective. The

scoreboard's architecture separates its operations into

two categories: forecasting and estimate. A prediction

model, often known as a 'Golden Reference Model,'

receives the same stimulus source as the DUT and

produces established reaction transaction streams.

The predictor, written in C, C++, SV, or System-C,

applies the DUT functionality at a higher level of

abstraction. After the appropriate feature is predicted,

the scoreboard will compare the actual outcomes

recorded on the DUT with the anticipated results.

I. IN MATLAB PREDICTOR APPLICATION

Mat lab is the industry standard for applying DSP

algorithms. The available DSP functions or

algorithms created with Mat lab may be used to

directly evaluate the output of HDL designs. These

DSP functions would be identical to the HDL designs

in terms of functionality. Figure 3 shows how the

Mat lab DSP function was used within the predictor

variable to generate the golden reference values. It

greatly simplifies the verification of dynamic

architecture. However, since Mat lab DSP functions

do not directly support HVL or HDL structures, it is

impossible to integrate them directly into the

predictor. The following methods are suggested for

utilizing Mat lab functionalities in verification

settings:

A. MATLAB and Direct Programming Interface
(DPI)
Engine:-DPI can be used to connect Mat lab with the

SV test bench. The bridge between them is software

written in the 'C' language containing Mat lab engine

routines.

B. HDL Verifier:-The Mat lab tool box called HDL

Verifier offers an EDA connection to help simulators

such as Cadence IEV and Questasimsim to bind to

Figure 2: Analysis Component

Figure 3: Mat lab in Predictor

C. TLM2 transaction communication in MATLAB:-

TLM2 Framework C environment transactions are

supported by both the UVM library and the Mat lab.

This program may be used to create an interface

between UVM and System C TLM2 as well as

System C TLM2 and Mat lab. Method A is not reliant

on an EDA simulator, is customizable, and does not

need any additional tools. It was, nevertheless,

chosen for presentation.

DPI is an SV and 'C' module that allows users to

make direct inter-language feature calls from either

side of the interface. Mat lab provides functions for

the engine library, including methods for invoking

Mat lab from C and FORTRAN programmers. The

engine library contains nine methods for controlling

the Mat lab computer engine from a 'C' package.

Table 1 summarizes these procedures. As shown in

Figure 4, these methods may be utilized in the 'C'

program to establish a relationship between SV and

Mat lab [1].

Dogo Rangsang Research Journal UGC Care Group I Journal
ISSN: 2347-7180 Vol-9 Issue-01 2019

3 Copyright @ 2019 Authors

As illustrated in Figure 5, a prototype C program was

developed to link an SV test bench to a Mat lab

algorithm.

Table 1: Mat lab engine routines

Figure 4: SV- Mat lab Interface

Figure 5: Interface C program

Device Virology and Mat lab both contain a variety

of data. The Mat lab's default data type is a double

matrix, while the SV test bench transmits and

receives data in binary format. As a result, new

procedures in the 'C' program were written to conduct

the necessary conversion for compatibility with the

target environment on the acquired data. Matlab files

(.m) and C files are compiled into an ashamed

library, which produces a shared library file (.so) and

a header file (.h). Mat lab entails interacting with the

shared library using the present matrix functions. The

gecko compiler and MatlabAPI header data are used

to build the 'C' file. Compilation machines are often

stored in a central repository.

I. DSP Event Analysis

The practical verification of two onboard IP key

designs is known as a case study. These case studies

use Matlabalgorithms as a real-time golden guide.

For both concepts, a realistic simulation based on

coverage was created.

A. Case Study No. 1: Fast Fourier Transform

The first design is an IP core for the dynamic Fast

Fourier Transform with an 8192 transition time

(FFT). The FFT is calculated using the Cooley-

Turkey method on unsealed output. This design was

evaluated using the Mat lab FFT method with the

same transform size as the gold comparison.

Restricted random test vectors produced using SV

were implemented on both DUT and Mat lab models.

Bit-by-bit DUT outputs were compared to Mat lab

performance in real time.

A regular frequency signal with random noise was

also generated in Mat lab and applied to both the

reference model and the form assessment DUT. The

results from each were plotted in real time in Mat lab.

The charting of the DUT response over the

Matlaboutput, as shown in Figure 6, revealed that the

design outputs were not completely balanced and that

minor deviations existed owing to DUT's inclusion of

superfluous frequency components. Further

debugging of the DUT reveals that these differences

are created at any time during processing by

compression of the stored data owing to limited

register duration and verified by the design team.

Case Study 2 of the Sine-Cosine LUT:

The Sine Cosine look up table generator IP heart is

the alternative design. The input angle width is 16

bits in this version, providing more than 0.005

resolution (step size) and 10 bits of output width for

improved precision. It was verified by utilizing a

limited random test variable to run the Mat lab

method in a loop with all possible input angle values.

Dogo Rangsang Research Journal UGC Care Group I Journal
ISSN: 2347-7180 Vol-9 Issue-01 2019

4 Copyright @ 2019 Authors

The design's performance (sine/cosine values) was

compared to those generated by Mat lab. The angle

values (16 bits) generated by the SV test bench are

used as sine or cosine LUT addresses in the

specification. In order to obtain the angle value from

the Matlabalgorithm for the same input angle value,

additional procedures for angle conversion activities

have to be developed in 'C'. In Mat lab, these values

were fixed point translated to make the Mat lab

algorithm performance (double - 64 bits long)

equivalent to the DUT (10 bits). The final output of

DUT was successfully compared and balanced with

Mat lab's result (i.e. golden reference values).

II. RESULT

The use of the MATLAB algorithm as a golden guide

has helped to reduce the test bench code's production

time and complexity. Debugging complex DSP

functions has become easier thanks to output

comparison on MATLAB plots. The practical

verification's overall dependability was also

significantly improved.

Figure 6: FFT responses of DUT (green) and Mat lab function

(blue)

CONCLUSION

A new automatic self-checking functional testing

method was utilized to guarantee the practical

correctness of complicated DSP dependent systems.

DSP-based capabilities may be validated with wider

coverage in less time using this approach. Mat lab is

being utilized to create such unique stimulus

feedback signals that are tough to achieve in SV. It is

also possible to do a more in-depth examination of

the DUT's performance utilizing spectrum analysis

and filtering at the RTL stage.

REFERENCES
[1] Havel Modi, Integrating MATLAB with verification HDLs

forFunctional Verification of Image and Video Processing

ASIC”International Journal of Computer Science & Emerging

Technologies”Volume 2, Issue 2, April 2011”

[2] Cookbook–UVM by Verification Academy Mentor graphics.

[3] Writing Testbenches using System Verilog by Janick

BergeronSynopsys, Inc.

[4] SystemVerilog for Verification -A Guide to Learning the

TestbenchLanguage Features by Chris Spear

