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Abstract 

The developing complexity of deep learning 

architectures is ensuing in schooling time requiring 

weeks or maybe months. This sluggish education is 

due in aspect to “vanishing gradients,” wherein the 

gradients utilized by once more-propagation are 

rather massive for weights connecting deep layers 

(layers near the output layer), and quite small for 

shallow layers (close to the input layer); this 

outcomes in slow learning within the shallow 

layers. furthermore, it has moreover been 

confirmed that during especially non-convex 

troubles, which includes deep neural networks, 

there may be a proliferation of immoderate-

mistakes low curvature saddle factors, which slows 

down learning dramatically [1]. on this paper, we 

strive to overcome the two above troubles via 

manner of presenting an optimization method for 

education deep neural networks which makes use 

of studying prices which may be every specific to 

each layer in the network and adaptive to the 

curvature of the feature, developing the gaining 

knowledge of charge at low curvature elements. 

This lets in us to hurry up learning in the shallow 

layers of the network and short break out 

excessive-errors low curvature saddle elements. We 

take a look at our approach on sizable image 

magnificence datasets which incorporates MNIST, 

CIFAR10 and ImageNet, and display that our 

method will boom accuracy further to reduces the 

required schooling time over giant algorithms. 

I. INTRODUCTION  

Deep neural networks have been extremely 

successful over the past few years, achieving state 

of the art performance on a large number of tasks 

such as image classification [2], face recognition 

[3], sentiment analysis [4], speech recognition [5], 

etc. One can spot a general trend in these papers: 

results tend to get better as the amount of training 

data increases, along with an increase in the 

complexity of the deep network architecture. 

However, increasingly complex deep networks can 

take weeks or months to train, even with high-

performance hardware. Thus, there is a need for 

more efficient methods for training deep networks. 

Deep neural networks learn high-level features by  

 

performing a sequence of non-linear 

transformations. Let our training data set A be  

composed of n data points a1, a2,...,an ∈ Rm and 

corresponding labels B = {bi}n i=1. Let us consider 

a 3-layer network with activation function f. Let X1 

and X2 denote the weights on each layer that we 

are trying to learn, i.e., X1 denotes the weights 

between nodes of the first layer and the second 

layer, and X2 denotes the weights between nodes 

of the second layer and the third layer. The learning 

problem for this specific example can be 

formulated as the following optimization problem: 

 

The activation function f can be any non-linear 

mapping, and is traditionally a sigmoid or tanh 

function. Recently, rectified linear (ReLu) units 

(f(z) = max{0, z}) have become popular because 

they tend to be easy to train and yield superior 

results for some problems [6]. The non-convex 

objective (1) is usually minimized using iterative 

methods (such as back-propagation) with the hope 

of converging to a good local minima. Most 

iterative schemes generate additive updates to a set 

of parameters x (in our case, the weight matrices) 

of the form 

 

whereΔx(k) is some appropriately chosen update. 

Notice we use slightly different notation here from 

standard optimization literature in that we 

incorporate the step size or learning rate t (k) 

within Δx(k) . This is done to help us describe other 

optimization algorithms easily in the following 

sections. Thus, Δx(k) denotes the update in the 

parameters, and comprises of a search direction and 

a step size or learning rate t (k) , which controls 

how large of a step to take in that direction. Most 

common update rules are variants of gradient 
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descent, where the search direction is given by the 

negative gradient g(k) : 

 

Since the size of the training data for these deep 

networks is usually of the order of millions or 

billions of data points, exact computation of the 

gradient is not feasible. Rather, the gradient is often 

estimated using a single data point or a small batch 

of data points. This is the basis for stochastic 

gradient descent (SGD) [7], which is the most 

widely used method for training deep nets. SGD 

requires manually selecting an initial learning rate, 

and then designing an update rule for the learning 

rate which decreases it over time (for example, 

exponential decay with time). The performance of 

SGD, however, is very sensitive to this choice of 

update, leading to adaptive methods that 

automatically adjust the learning rate as the system 

learns [8], [9]. When these descent methods are 

used to train deep networks, additional problems 

are introduced. As the number of layers in a 

network increases, the gradients that are propagated 

back to the initial layers get very small. This 

dramatically slows down the rate of learning in the 

initial layers, and slows down convergence of the 

whole network [10]. 

Recently, it has also been shown that for high-

dimensional non-convex problems, such as deep 

networks, the existence of local minima which have 

high error relative to the global minima is 

exponentially small in the number of dimensions. 

Instead, in these problems, there is an exponentially 

large number of high error saddle points with low 

curvature [1], [11], [12]. Gradient descent methods, 

in general, move away from saddle points by 

following the directions of negative curvature. 

However, due to the low curvature of small 

negative eigenvalues, the steps taken become very 

small, thus slowing down learning considerably. In 

this paper, we propose a method that alleviates the 

problems mentioned above. The main contribution 

of our method is summarized below: • The learning 

rates are specific to each layer in the network. This 

allows larger learning rates to compensate for the 

small size of gradients in shallow layers. • The 

learning rates for each layer tend to increase at low 

curvature points. This enables the method to 

quickly escape from high-error, low-curvature 

saddle points, which occur in abundance in deep 

network. • It is applicable to most existing 

stochastic gradient optimization methods which use 

a global learning rate. • It requires very little extra 

computation over standard stochastic gradient 

methods, and requires no extra storage of previous 

gradients required as in AdaGrad [9]. In Section II, 

we review some popular gradient methods that 

have been successful for deep networks. In Section 

III, we describe our optimization algorithm. 

Finally, in Section IV we compare our method to 

standard optimization algorithms on datasets like 

MNIST, CIFAR10 and ImageNet. 

II. RELATED WORK  

Stochastic Gradient Descent (SGD) still remains 

one of the most widely used methods for large-

scale machine learning, largely due to its ease in 

implementation. In SGD, the updates for the 

parameters are defined by equations (2) and (3), 

and the learning rate is decreased over time as 

iterates approach a local optimum. A standard 

learning rate update is given b 

 

where the initial learning rate t (0), γ and p are 

hyperparameters chosen by the user. Many 

modifications to the basic gradient descent 

algorithm have been proposed. A popular method 

in the convex optimization literature is Newton’s 

method, which uses the Hessian of the objective 

function f(x) to determine the step size: 

 

Unfortunately, as the number of parameters 

increases, even to moderate size, computing the 

Hessian becomes very computationally expensive. 

Thus, there have been many modifications 

proposed which either try to improve the use of 

first-order information or try to approximate the 

Hessian of the objective function. In this paper, we 

focus on modifications to first-order methods. The 

classical momentum method [13] is a technique 

that increases the learning rate for parameters for 

which the gradient consistently points in the same 

direction, while decreasing the learning rate for 

parameters for which the gradient is changing fast. 

Thus, the update equation keeps track of previous 

updates to the parameters with an exponential 

decay: 

 

where μ ∈ [0, 1] is called the momentum 

coefficient, and t > 0 is the global learning rate. 

Nesterov’s Accelerated Gradient (NAG) [14], a 

first order method, has a better convergence rate 

than gradient descent in certain situations. This 

method predicts the gradient for the next iteration 

and changes the learning rate for the current 

iteration based on the predicted gradient. Thus, if 

the gradient is higher for the next step, it would 

increase the learning rate for the current iteration 

and if it is low, it would slow down. Recently, [15] 
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showed that this method can be thought of as a 

momentum method with the update equation as 

follows: 

 

Through a carefully designed random initialization 

and using a particular type of slowly increasing 

schedule for μ, this method can reach high levels of 

performance when used on deep networks [15]. 

Rather than using a single learning rate over all 

parameters, recent work has shown that using a 

learning rate specific to each parameter can be a 

much more successful approach. A method that has 

gained popularity is AdaGrad [9], which uses the 

following update rule: 

 

The denominator is the l2 norm of all the gradients 

of the previous iterations. This scales the global 

learning rate t, which is shared by all the 

parameters, to give a parameterspecific learning 

rate. One disadvantage of AdaGrad is that it 

accumulates the gradients over all previous 

iterations, the sum of which continues to grow 

throughout training. This (along with weight decay) 

shrinks the learning rate on each parameter until 

each is infinitesimally small, limiting the number of 

iterations of useful training. A method which builds 

on AdaGrad and attempts to address some of the 

above-mentioned disadvantages is AdaDelta [8]. 

AdaDelta accumulates the gradients in the previous 

time steps using an exponentially decaying average 

of the squared gradients. This prevents the 

denominator from becoming infinitesimally small, 

and ensures that the parameters continue to be 

updated even after a large number of iterations. It 

also replaces the global learning rate t with an 

exponentially decaying average of the squares of 

the parameter updates Δx over the previous 

iterations. This method has been shown to perform 

relatively well when used to train deep networks, 

and is much less sensitive to the choice of hyper-

parameters. However, it does not perform as well 

as other methods like SGD and AdaGrad in terms 

of accuracy [8]. 

III. OUR APPROACH  

Because of the “vanishing gradients” phenomenon, 

shallow network layers tend to have much smaller 

gradients than deep layers – sometimes differing by 

orders of magnitude from one layer to the next 

[10]. In most previous work in optimization for 

deep networks, methods either keep a global 

learning rate that is shared over all parameters, or 

use an adaptive learning rate specific to each 

parameter. Our method exploits the following 

observation: parameters in the same layer have 

gradients of similar magnitudes, and can thus 

efficiently share a common learning rate. Layer-

specific learning rates can be used to accelerate 

layers with smaller gradients. Another advantage of 

this approach is that by avoiding the computation 

of large numbers of parameter-specific learning 

rates, our method remains computationally 

efficient. Finally, as mentioned in Section I, to 

avoid slowing down learning at high-error low 

curvature saddle points, we also want our method 

to take large steps at low curvature points. Let t (k) 

be the learning rate at the k-th iteration for any 

standard optimization method. In case of SGD, this 

would be given by equation 4, while for AdaGrad it 

would just be the global learning rate t as in 

equation 8. We propose to modify t (k) as follows: 

 

Here t (k) l denotes the new learning rate for the 

parameters in the l-th layer at the k-th iteration and 

g (k) l denotes a vector of the gradients of the 

parameters in the l-th layer at the k-th iteration. 

Thus, we see that we use only the gradients in the 

same layer to determine the learning rate for that 

layer. It is also important to note that we do not use 

any gradients from previous iterations, and thus 

save on storage. From equation 9, we see that when 

the gradients in a layer are very large, the equation 

just reduces to using the normal learning rate t (k) . 

However, when the gradients are very small, we are 

more likely to be near a low curvature point. Thus, 

the equation scales up the learning rate to ensure 

that the initial layers of the network learn faster, 

and that we escape higherror low curvature saddle 

points quickly. We can use this layer-specific 

learning rate on top of SGD. Using equation 3, the 

update in that case, would be: 

 

whereΔx(k) l denotes the update in the parameters 

of the l-th layer at the k-th iteration. Similarly, we 

can modify AdaGrad’s update equation (8) to use 

our modified learning rates. 

 

Note that, unlike AdaGrad which uses a distinct 

learning rate for each parameter, we use a different 

learning rate for each layer, which is shared by all 

weights in that layer. Additionally, AdaGrad 

modifies the learning rate based on the entire 

history of gradients observed for that weight while 
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we update a layer’s learning rate based only on 

gradients observed for all weights in a specific 

layer in the current iteration. Thus, our scheme 

avoids both storing gradient information from 

previous iterations and computing learning rates for 

each parameter; it is therefore less computationally 

and memory intensive when compared to AdaGrad. 

The proposed layer specific learning rates also 

works well on large scale datasets like ImageNet 

(when applied over SGD), where AdaGrad fails to 

converge to a good solution. The proposed method 

can be used with any existing optimization 

technique which uses a global learning rate, 

provides a layer-specific learning rate, and escapes 

saddle points quickly, all without sacrificing 

computation or memory usage. As we show in 

Section IV, using our adaptive learning rates on top 

of existing optimization techniques almost always 

improves performance on standard datasets. The 

proposed method can be used with any existing 

optimization technique which uses a global 

learning rate. This helps in getting a layer-specific 

learning rate, as well as, helps in escaping saddle 

points quicker, with very little computational 

overhead. As we show in Section IV, using our 

adaptive learning rates on top of existing 

optimization techniques almost always improves 

performance on standard datasets.  

IV. EXPERIMENTAL RESULTS  

A. Dataset 

 We present image classification results on three 

standard datasets: MNIST, CIFAR10 and ImageNet 

(ILSVRC 2012 dataset, part of the ImageNet 

challenge). MNIST contains 60,000 handwritten 

digit images for training and 10,000 handwritten 

digit images for testing. CIFAR10 contains has 10 

classes with 6,000 images in each class. ImageNet 

contains 1.2 million color images from 1000 

different classes. B. Experimental Details We use 

Caffe [16] to implement our method. Caffe 

provides optimization methods for Stochastic 

Gradient Descent (SGD), Nesterov’s Accelerated 

Gradient (NAG) and AdaGrad. For a fair 

comparison between state-of-the-art methods, we 

add our adaptive layer-specific learning rate 

method on top of each of these optimization 

methods. In our experiments, we demonstrate the 

effectiveness of our algorithm on convolutional 

neural networks on 3 datasets. On CIFAR10, we 

use the same global learning rate as provided in 

Caffe. Since our method always increases the layer-

specific learning rate (with respect to other 

optimization methods) based on the global learning 

rate, we start with a slightly smaller learning rate of 

0.006 to make the learning less aggressive for the 

ImageNet experiment. SGD was initialized with the 

learning rate used in [2] for experiments done on 

ImageNet. 1) MNIST: We use the same 

architecture as LeNet for our experiments on 

MNIST. We present the results of using our 

proposed layer-specific learning rates on top of 

stochastic gradient descent, Nesterov’s accelerated 

gradient method and AdaGrad on the MNIST 

dataset. Since all methods converge very quickly 

on this dataset, we present the accuracy and loss 

only for the first 2,000 iterations. Table I shows the 

 

TABLE I: Mean error rate on MNIST after 

different iterations for stochastic gradient descent, 

Nesterov’s accelerated gradient and AdaGrad with 

their layer specific adaptive versions are shown in 

the table. Each method was run 10 times and their 

mean and standard deviation is reported. 

 

Fig. 1: On CIFAR data set: plots showing 

accuracies (Figures 1a-1c) comparing SGD, NAG 

and AdaGrad, each with our adaptive layer-wise 

learning rates. For the SGD plot, we show results 

both when we step down the learning rate at 50,000 

iterations as well as 60,000 iterations. 

mean accuracy and standard deviation when each 

method was run 10 times. We observe that our 

proposed layer-specific learning rate is consistently 

better than Nesterov’s accelerated gradient, 

stochastic gradient descent and AdaGrad. In all the 

experiments, the proposed method also attains the 

maximum accuracy of 99.2% just like stochastic 

gradient descent, Nesterov’s accelerated gradient 

and AdaGrad.  

2) CIFAR10: On CIFAR10 we use a convolutional 

neural network with 2 layers of 32 feature maps 

from 5 × 5 convolution kernels, each followed by 3 

× 3 max pooling layers. After this we have another 

convolution layer with 64 feature maps from a 5 × 

5 convolution kernel followed by a 3 × 3 max 

pooling layer. Finally, we have a fully connected 

layer with 10 hidden nodes and a soft-max logistic 

regression layer. After each convolution layer a 

ReLu non-linearity is applied. This is the same 

architecture as specified in Caffe. For the first 

60,000 iterations the learning rate was 0.001 and it 

was dropped by a factor of 10 at 60,000 and 65,000 

iterations. On this dataset, we again observe that 

final error and loss of our method is consistently 

lower than SGD, NAG and AdaGrad (Table II). 

After step down, our adaptive method reaches a 
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lower accuracy than both SGD and NAG. Note that 

just using our optimization method (without 

changing the network architecture) we can get an 

improvement of 0.32% over the mean accuracy for 

SGD. Even if we step down the learning rate at 

50,000 iterations (taking 60000 iterations in total), 

we obtain an accuracy of 82.08%, which is better 

than SGD after 70,000 iterations, significantly 

cutting down on required training time Fig. 1. Since 

our method converges much faster when used with 

SGD, it is possible to perform the step down on the 

learning rate even earlier, potentially reducing 

training time even further. Although Adagrad does 

not perform very well on CIFAR10 with default 

parameters, we observe an improvement of 1.3% 

over the mean final accuracy, with again a 

significant speed-up in training time. 

3) ImageNet:  

We use an implementation of AlexNet [2] in Caffe, 

a deep convolutional neural network architecture, 

for comparing our method with other optimization 

algorithms. AlexNet consists of 5 convolution 

layers followed by 3 fully connected layers. More 

details regarding the architecture can be found in 

the paper [2]. Since AlexNet is a deep neural 

network with significant complexity, it is suitable 

to apply our method on this network architecture. 

Fig 2 shows the results of using our method over 

SGD. We observe that our method obtains 

significantly greater accuracy and lower loss after 

100,000 and 200,000 iterations. Further, we are 

also able to reach the maximum accuracy of 57.5% 

on the validation set after 295,000 iterations which 

is achieved by SGD only after 345,000 iterations, 

resulting in a reduction of 15% in training time. 

Given that such a large model takes more than a 

week to train properly, this is a significant 

reduction. Our loss is also consistently lower than 

SGD across all iterations. In the existing model, we 

perform a step down by a factor of 10 after every 

100,000 iterations. In order to analyze how our 

method performs when we reduce the number of 

training iterations, we vary the number of training 

iterations at a specific learning rate before 

performing a step down. Table III shows the final 

accuracy after 350,000 iterations of SGD and our 

method. Although the final accuracy drops slightly 

as we decrease the number of iterations after which 

we perform the step down in the learning rate, it is 

clearly evident that our method achieves better 

accuracy than SGD. Note that we report top-1 class 

accuracy. Since we use the Caffe implementation 

of the AlexNet architecture and do not use any data 

augmentation techniques, our results are slightly 

lower than those reported in [2]. 

IV. CONCLUSIONS 

 In this paper we propose a general method for 

training deep neural networks using layer-specific 

adaptive learning rates, 

 

TABLE II: Mean accuracy on CIFAR10 after 

different iterations for SGD, NAG and AdaGrad 

with their layer specific adaptive versions are 

shown in the table. The mean and standard 

deviation over 5 runs is reported. 

 

Fig. 2: On ImageNet data set: plot comparing 

stochastic gradient descent with our adaptive layer-

wise learning rates. We can see a consistent 

improvement in accuracy and loss over the regular 

SGD method across all iterations. 

 

TABLE III: Comparison of stochastic gradient 

descent and Our Method with step-down at 

different iterations on ImageNet which can be used 

on top of any optimization method with a global 

learning rate.  

The method uses gradients from each layer to 

compute an adaptive learning rate for each layer. It 

aims to speed up convergence when the parameters 

are in a low curvature saddle point region. Layer-

specific learning rates also enable the method to 

prevent slow learning in initial layers of the deep 

network, usually caused by very small gradient 

values. 
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