
Dogo Rangsang Research Journal UGC Care Group I Journal
ISSN: 2347-7180 Vol-12 Issue-02 2022

Copyright @ 2022 Authors

ON DEEP NETWORK OPTIMIZATION USING ADAPTIVE

LEARNING RATES
1N Ch Ravi, Assistant Professor, Mail ID:ravi@saimail.com

2B Pannalal, Assistant Professor, Mail ID:bpannalal@gmail.com

3Dr M Bal Raju, Professor , Mail ID:drrajucse@gmail.com

4Dr. M Sreenivasulu, Associate Professor , Mail ID:@gmail.com

Department of CSE Engineering,

Pallavi Engineering College Hyderabad, Telangana 501505

Abstract

The developing complexity of deep learning

architectures is ensuing in schooling time requiring

weeks or maybe months. This sluggish education is

due in aspect to “vanishing gradients,” wherein the

gradients utilized by once more-propagation are

rather massive for weights connecting deep layers

(layers near the output layer), and quite small for

shallow layers (close to the input layer); this

outcomes in slow learning within the shallow

layers. furthermore, it has moreover been

confirmed that during especially non-convex

troubles, which includes deep neural networks,

there may be a proliferation of immoderate-

mistakes low curvature saddle factors, which slows

down learning dramatically [1]. on this paper, we

strive to overcome the two above troubles via

manner of presenting an optimization method for

education deep neural networks which makes use

of studying prices which may be every specific to

each layer in the network and adaptive to the

curvature of the feature, developing the gaining

knowledge of charge at low curvature elements.

This lets in us to hurry up learning in the shallow

layers of the network and short break out

excessive-errors low curvature saddle elements. We

take a look at our approach on sizable image

magnificence datasets which incorporates MNIST,

CIFAR10 and ImageNet, and display that our

method will boom accuracy further to reduces the

required schooling time over giant algorithms.

I. INTRODUCTION

Deep neural networks have been extremely

successful over the past few years, achieving state

of the art performance on a large number of tasks

such as image classification [2], face recognition

[3], sentiment analysis [4], speech recognition [5],

etc. One can spot a general trend in these papers:

results tend to get better as the amount of training

data increases, along with an increase in the

complexity of the deep network architecture.

However, increasingly complex deep networks can

take weeks or months to train, even with high-

performance hardware. Thus, there is a need for

more efficient methods for training deep networks.

Deep neural networks learn high-level features by

performing a sequence of non-linear

transformations. Let our training data set A be

composed of n data points a1, a2,...,an ∈ Rm and

corresponding labels B = {bi}n i=1. Let us consider

a 3-layer network with activation function f. Let X1

and X2 denote the weights on each layer that we

are trying to learn, i.e., X1 denotes the weights

between nodes of the first layer and the second

layer, and X2 denotes the weights between nodes

of the second layer and the third layer. The learning

problem for this specific example can be

formulated as the following optimization problem:

The activation function f can be any non-linear

mapping, and is traditionally a sigmoid or tanh

function. Recently, rectified linear (ReLu) units

(f(z) = max{0, z}) have become popular because

they tend to be easy to train and yield superior

results for some problems [6]. The non-convex

objective (1) is usually minimized using iterative

methods (such as back-propagation) with the hope

of converging to a good local minima. Most

iterative schemes generate additive updates to a set

of parameters x (in our case, the weight matrices)

of the form

whereΔx(k) is some appropriately chosen update.

Notice we use slightly different notation here from

standard optimization literature in that we

incorporate the step size or learning rate t (k)

within Δx(k) . This is done to help us describe other

optimization algorithms easily in the following

sections. Thus, Δx(k) denotes the update in the

parameters, and comprises of a search direction and

a step size or learning rate t (k) , which controls

how large of a step to take in that direction. Most

common update rules are variants of gradient

Dogo Rangsang Research Journal UGC Care Group I Journal
ISSN: 2347-7180 Vol-12 Issue-02 2022

Copyright @ 2022 Authors

descent, where the search direction is given by the

negative gradient g(k) :

Since the size of the training data for these deep

networks is usually of the order of millions or

billions of data points, exact computation of the

gradient is not feasible. Rather, the gradient is often

estimated using a single data point or a small batch

of data points. This is the basis for stochastic

gradient descent (SGD) [7], which is the most

widely used method for training deep nets. SGD

requires manually selecting an initial learning rate,

and then designing an update rule for the learning

rate which decreases it over time (for example,

exponential decay with time). The performance of

SGD, however, is very sensitive to this choice of

update, leading to adaptive methods that

automatically adjust the learning rate as the system

learns [8], [9]. When these descent methods are

used to train deep networks, additional problems

are introduced. As the number of layers in a

network increases, the gradients that are propagated

back to the initial layers get very small. This

dramatically slows down the rate of learning in the

initial layers, and slows down convergence of the

whole network [10].

Recently, it has also been shown that for high-

dimensional non-convex problems, such as deep

networks, the existence of local minima which have

high error relative to the global minima is

exponentially small in the number of dimensions.

Instead, in these problems, there is an exponentially

large number of high error saddle points with low

curvature [1], [11], [12]. Gradient descent methods,

in general, move away from saddle points by

following the directions of negative curvature.

However, due to the low curvature of small

negative eigenvalues, the steps taken become very

small, thus slowing down learning considerably. In

this paper, we propose a method that alleviates the

problems mentioned above. The main contribution

of our method is summarized below: • The learning

rates are specific to each layer in the network. This

allows larger learning rates to compensate for the

small size of gradients in shallow layers. • The

learning rates for each layer tend to increase at low

curvature points. This enables the method to

quickly escape from high-error, low-curvature

saddle points, which occur in abundance in deep

network. • It is applicable to most existing

stochastic gradient optimization methods which use

a global learning rate. • It requires very little extra

computation over standard stochastic gradient

methods, and requires no extra storage of previous

gradients required as in AdaGrad [9]. In Section II,

we review some popular gradient methods that

have been successful for deep networks. In Section

III, we describe our optimization algorithm.

Finally, in Section IV we compare our method to

standard optimization algorithms on datasets like

MNIST, CIFAR10 and ImageNet.

II. RELATED WORK

Stochastic Gradient Descent (SGD) still remains

one of the most widely used methods for large-

scale machine learning, largely due to its ease in

implementation. In SGD, the updates for the

parameters are defined by equations (2) and (3),

and the learning rate is decreased over time as

iterates approach a local optimum. A standard

learning rate update is given b

where the initial learning rate t (0), γ and p are

hyperparameters chosen by the user. Many

modifications to the basic gradient descent

algorithm have been proposed. A popular method

in the convex optimization literature is Newton’s

method, which uses the Hessian of the objective

function f(x) to determine the step size:

Unfortunately, as the number of parameters

increases, even to moderate size, computing the

Hessian becomes very computationally expensive.

Thus, there have been many modifications

proposed which either try to improve the use of

first-order information or try to approximate the

Hessian of the objective function. In this paper, we

focus on modifications to first-order methods. The

classical momentum method [13] is a technique

that increases the learning rate for parameters for

which the gradient consistently points in the same

direction, while decreasing the learning rate for

parameters for which the gradient is changing fast.

Thus, the update equation keeps track of previous

updates to the parameters with an exponential

decay:

where μ ∈ [0, 1] is called the momentum

coefficient, and t > 0 is the global learning rate.

Nesterov’s Accelerated Gradient (NAG) [14], a

first order method, has a better convergence rate

than gradient descent in certain situations. This

method predicts the gradient for the next iteration

and changes the learning rate for the current

iteration based on the predicted gradient. Thus, if

the gradient is higher for the next step, it would

increase the learning rate for the current iteration

and if it is low, it would slow down. Recently, [15]

Dogo Rangsang Research Journal UGC Care Group I Journal
ISSN: 2347-7180 Vol-12 Issue-02 2022

Copyright @ 2022 Authors

showed that this method can be thought of as a

momentum method with the update equation as

follows:

Through a carefully designed random initialization

and using a particular type of slowly increasing

schedule for μ, this method can reach high levels of

performance when used on deep networks [15].

Rather than using a single learning rate over all

parameters, recent work has shown that using a

learning rate specific to each parameter can be a

much more successful approach. A method that has

gained popularity is AdaGrad [9], which uses the

following update rule:

The denominator is the l2 norm of all the gradients

of the previous iterations. This scales the global

learning rate t, which is shared by all the

parameters, to give a parameterspecific learning

rate. One disadvantage of AdaGrad is that it

accumulates the gradients over all previous

iterations, the sum of which continues to grow

throughout training. This (along with weight decay)

shrinks the learning rate on each parameter until

each is infinitesimally small, limiting the number of

iterations of useful training. A method which builds

on AdaGrad and attempts to address some of the

above-mentioned disadvantages is AdaDelta [8].

AdaDelta accumulates the gradients in the previous

time steps using an exponentially decaying average

of the squared gradients. This prevents the

denominator from becoming infinitesimally small,

and ensures that the parameters continue to be

updated even after a large number of iterations. It

also replaces the global learning rate t with an

exponentially decaying average of the squares of

the parameter updates Δx over the previous

iterations. This method has been shown to perform

relatively well when used to train deep networks,

and is much less sensitive to the choice of hyper-

parameters. However, it does not perform as well

as other methods like SGD and AdaGrad in terms

of accuracy [8].

III. OUR APPROACH

Because of the “vanishing gradients” phenomenon,

shallow network layers tend to have much smaller

gradients than deep layers – sometimes differing by

orders of magnitude from one layer to the next

[10]. In most previous work in optimization for

deep networks, methods either keep a global

learning rate that is shared over all parameters, or

use an adaptive learning rate specific to each

parameter. Our method exploits the following

observation: parameters in the same layer have

gradients of similar magnitudes, and can thus

efficiently share a common learning rate. Layer-

specific learning rates can be used to accelerate

layers with smaller gradients. Another advantage of

this approach is that by avoiding the computation

of large numbers of parameter-specific learning

rates, our method remains computationally

efficient. Finally, as mentioned in Section I, to

avoid slowing down learning at high-error low

curvature saddle points, we also want our method

to take large steps at low curvature points. Let t (k)

be the learning rate at the k-th iteration for any

standard optimization method. In case of SGD, this

would be given by equation 4, while for AdaGrad it

would just be the global learning rate t as in

equation 8. We propose to modify t (k) as follows:

Here t (k) l denotes the new learning rate for the

parameters in the l-th layer at the k-th iteration and

g (k) l denotes a vector of the gradients of the

parameters in the l-th layer at the k-th iteration.

Thus, we see that we use only the gradients in the

same layer to determine the learning rate for that

layer. It is also important to note that we do not use

any gradients from previous iterations, and thus

save on storage. From equation 9, we see that when

the gradients in a layer are very large, the equation

just reduces to using the normal learning rate t (k) .

However, when the gradients are very small, we are

more likely to be near a low curvature point. Thus,

the equation scales up the learning rate to ensure

that the initial layers of the network learn faster,

and that we escape higherror low curvature saddle

points quickly. We can use this layer-specific

learning rate on top of SGD. Using equation 3, the

update in that case, would be:

whereΔx(k) l denotes the update in the parameters

of the l-th layer at the k-th iteration. Similarly, we

can modify AdaGrad’s update equation (8) to use

our modified learning rates.

Note that, unlike AdaGrad which uses a distinct

learning rate for each parameter, we use a different

learning rate for each layer, which is shared by all

weights in that layer. Additionally, AdaGrad

modifies the learning rate based on the entire

history of gradients observed for that weight while

Dogo Rangsang Research Journal UGC Care Group I Journal
ISSN: 2347-7180 Vol-12 Issue-02 2022

Copyright @ 2022 Authors

we update a layer’s learning rate based only on

gradients observed for all weights in a specific

layer in the current iteration. Thus, our scheme

avoids both storing gradient information from

previous iterations and computing learning rates for

each parameter; it is therefore less computationally

and memory intensive when compared to AdaGrad.

The proposed layer specific learning rates also

works well on large scale datasets like ImageNet

(when applied over SGD), where AdaGrad fails to

converge to a good solution. The proposed method

can be used with any existing optimization

technique which uses a global learning rate,

provides a layer-specific learning rate, and escapes

saddle points quickly, all without sacrificing

computation or memory usage. As we show in

Section IV, using our adaptive learning rates on top

of existing optimization techniques almost always

improves performance on standard datasets. The

proposed method can be used with any existing

optimization technique which uses a global

learning rate. This helps in getting a layer-specific

learning rate, as well as, helps in escaping saddle

points quicker, with very little computational

overhead. As we show in Section IV, using our

adaptive learning rates on top of existing

optimization techniques almost always improves

performance on standard datasets.

IV. EXPERIMENTAL RESULTS

A. Dataset

 We present image classification results on three

standard datasets: MNIST, CIFAR10 and ImageNet

(ILSVRC 2012 dataset, part of the ImageNet

challenge). MNIST contains 60,000 handwritten

digit images for training and 10,000 handwritten

digit images for testing. CIFAR10 contains has 10

classes with 6,000 images in each class. ImageNet

contains 1.2 million color images from 1000

different classes. B. Experimental Details We use

Caffe [16] to implement our method. Caffe

provides optimization methods for Stochastic

Gradient Descent (SGD), Nesterov’s Accelerated

Gradient (NAG) and AdaGrad. For a fair

comparison between state-of-the-art methods, we

add our adaptive layer-specific learning rate

method on top of each of these optimization

methods. In our experiments, we demonstrate the

effectiveness of our algorithm on convolutional

neural networks on 3 datasets. On CIFAR10, we

use the same global learning rate as provided in

Caffe. Since our method always increases the layer-

specific learning rate (with respect to other

optimization methods) based on the global learning

rate, we start with a slightly smaller learning rate of

0.006 to make the learning less aggressive for the

ImageNet experiment. SGD was initialized with the

learning rate used in [2] for experiments done on

ImageNet. 1) MNIST: We use the same

architecture as LeNet for our experiments on

MNIST. We present the results of using our

proposed layer-specific learning rates on top of

stochastic gradient descent, Nesterov’s accelerated

gradient method and AdaGrad on the MNIST

dataset. Since all methods converge very quickly

on this dataset, we present the accuracy and loss

only for the first 2,000 iterations. Table I shows the

TABLE I: Mean error rate on MNIST after

different iterations for stochastic gradient descent,

Nesterov’s accelerated gradient and AdaGrad with

their layer specific adaptive versions are shown in

the table. Each method was run 10 times and their

mean and standard deviation is reported.

Fig. 1: On CIFAR data set: plots showing

accuracies (Figures 1a-1c) comparing SGD, NAG

and AdaGrad, each with our adaptive layer-wise

learning rates. For the SGD plot, we show results

both when we step down the learning rate at 50,000

iterations as well as 60,000 iterations.

mean accuracy and standard deviation when each

method was run 10 times. We observe that our

proposed layer-specific learning rate is consistently

better than Nesterov’s accelerated gradient,

stochastic gradient descent and AdaGrad. In all the

experiments, the proposed method also attains the

maximum accuracy of 99.2% just like stochastic

gradient descent, Nesterov’s accelerated gradient

and AdaGrad.

2) CIFAR10: On CIFAR10 we use a convolutional

neural network with 2 layers of 32 feature maps

from 5 × 5 convolution kernels, each followed by 3

× 3 max pooling layers. After this we have another

convolution layer with 64 feature maps from a 5 ×

5 convolution kernel followed by a 3 × 3 max

pooling layer. Finally, we have a fully connected

layer with 10 hidden nodes and a soft-max logistic

regression layer. After each convolution layer a

ReLu non-linearity is applied. This is the same

architecture as specified in Caffe. For the first

60,000 iterations the learning rate was 0.001 and it

was dropped by a factor of 10 at 60,000 and 65,000

iterations. On this dataset, we again observe that

final error and loss of our method is consistently

lower than SGD, NAG and AdaGrad (Table II).

After step down, our adaptive method reaches a

Dogo Rangsang Research Journal UGC Care Group I Journal
ISSN: 2347-7180 Vol-12 Issue-02 2022

Copyright @ 2022 Authors

lower accuracy than both SGD and NAG. Note that

just using our optimization method (without

changing the network architecture) we can get an

improvement of 0.32% over the mean accuracy for

SGD. Even if we step down the learning rate at

50,000 iterations (taking 60000 iterations in total),

we obtain an accuracy of 82.08%, which is better

than SGD after 70,000 iterations, significantly

cutting down on required training time Fig. 1. Since

our method converges much faster when used with

SGD, it is possible to perform the step down on the

learning rate even earlier, potentially reducing

training time even further. Although Adagrad does

not perform very well on CIFAR10 with default

parameters, we observe an improvement of 1.3%

over the mean final accuracy, with again a

significant speed-up in training time.

3) ImageNet:

We use an implementation of AlexNet [2] in Caffe,

a deep convolutional neural network architecture,

for comparing our method with other optimization

algorithms. AlexNet consists of 5 convolution

layers followed by 3 fully connected layers. More

details regarding the architecture can be found in

the paper [2]. Since AlexNet is a deep neural

network with significant complexity, it is suitable

to apply our method on this network architecture.

Fig 2 shows the results of using our method over

SGD. We observe that our method obtains

significantly greater accuracy and lower loss after

100,000 and 200,000 iterations. Further, we are

also able to reach the maximum accuracy of 57.5%

on the validation set after 295,000 iterations which

is achieved by SGD only after 345,000 iterations,

resulting in a reduction of 15% in training time.

Given that such a large model takes more than a

week to train properly, this is a significant

reduction. Our loss is also consistently lower than

SGD across all iterations. In the existing model, we

perform a step down by a factor of 10 after every

100,000 iterations. In order to analyze how our

method performs when we reduce the number of

training iterations, we vary the number of training

iterations at a specific learning rate before

performing a step down. Table III shows the final

accuracy after 350,000 iterations of SGD and our

method. Although the final accuracy drops slightly

as we decrease the number of iterations after which

we perform the step down in the learning rate, it is

clearly evident that our method achieves better

accuracy than SGD. Note that we report top-1 class

accuracy. Since we use the Caffe implementation

of the AlexNet architecture and do not use any data

augmentation techniques, our results are slightly

lower than those reported in [2].

IV. CONCLUSIONS

 In this paper we propose a general method for

training deep neural networks using layer-specific

adaptive learning rates,

TABLE II: Mean accuracy on CIFAR10 after

different iterations for SGD, NAG and AdaGrad

with their layer specific adaptive versions are

shown in the table. The mean and standard

deviation over 5 runs is reported.

Fig. 2: On ImageNet data set: plot comparing

stochastic gradient descent with our adaptive layer-

wise learning rates. We can see a consistent

improvement in accuracy and loss over the regular

SGD method across all iterations.

TABLE III: Comparison of stochastic gradient

descent and Our Method with step-down at

different iterations on ImageNet which can be used

on top of any optimization method with a global

learning rate.

The method uses gradients from each layer to

compute an adaptive learning rate for each layer. It

aims to speed up convergence when the parameters

are in a low curvature saddle point region. Layer-

specific learning rates also enable the method to

prevent slow learning in initial layers of the deep

network, usually caused by very small gradient

values.

Dogo Rangsang Research Journal UGC Care Group I Journal
ISSN: 2347-7180 Vol-12 Issue-02 2022

Copyright @ 2022 Authors

REFERENCES

[1] R. Pascanu, Y. N. Dauphin, S. Ganguli, and Y.

Bengio, “On the saddle point problem for non-

convex optimization,” arXiv preprint

arXiv:1405.4604, 2014.

 [2] A. Krizhevsky, I. Sutskever, and G. E. Hinton,

“Imagenet classification with deep convolutional

neural networks,” in Advances in neural

information processing systems, 2012, pp. 1097–

1105.

 [3] Y. Taigman, M. Yang, M. Ranzato, and L.

Wolf, “Deepface: Closing the gap to human-level

performance in face verification,” in Computer

Vision and Pattern Recognition (CVPR), 2014

IEEE Conference on. IEEE, 2014, pp. 1701–1708.

[4] R. Socher, A. Perelygin, J. Y. Wu, J. Chuang,

C. D. Manning, A. Y. Ng, and C. Potts, “Recursive

deep models for semantic compositionality over a

sentiment treebank,” in Proceedings of the

Conference on Empirical Methods in Natural

Language Processing (EMNLP). Citeseer, 2013,

pp. 1631–1642.

 [5] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r.

Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P.

Nguyen, T. N. Sainath et al., “Deep neural

networks for acoustic modeling in speech

recognition: The shared views of four research

groups,” Signal Processing Magazine, IEEE, vol.

29, no. 6, pp. 82–97, 2012.

[6] X. Glorot, A. Bordes, and Y. Bengio, “Deep

sparse rectifier networks,” in Proceedings of the

14th International Conference on Artificial

Intelligence and Statistics. JMLR W&CP Volume,

vol. 15, 2011, pp. 315–323.

 [7] H. Robbins, S. Monro et al., “A stochastic

approximation method,” The Annals of

Mathematical Statistics, vol. 22, no. 3, pp. 400–

407, 1951.

 [8] M. D. Zeiler, “Adadelta: An adaptive learning

rate method,” arXiv preprint arXiv:1212.5701,

2012.

 [9] J. Duchi, E. Hazan, and Y. Singer, “Adaptive

subgradient methods for online learning and

stochastic optimization,” The Journal of Machine

Learning Research, vol. 12, pp. 2121–2159, 2011.

 [10] S. Hochreiter and J. Schmidhuber, “Long

short-term memory,” Neural computation, vol. 9,

no. 8, pp. 1735–1780, 1997.

[11] A. J. Bray and D. S. Dean, “Statistics of

critical points of gaussian fields on large-

dimensional spaces,” Physical review letters, vol.

98, no. 15, p. 150201, 2007.

[12] Y. V. Fyodorov and I. Williams, “Replica

symmetry breaking condition exposed by random

matrix calculation of landscape complexity,”

Journal of Statistical Physics, vol. 129, no. 5-6, pp.

1081–1116, 2007. [13] B. T. Polyak, “Some

methods of speeding up the convergence of

iteration methods,” USSR Computational

Mathematics and Mathematical Physics, vol. 4, no.

5, pp. 1–17, 1964.

 [14] Y. Nesterov, “A method of solving a convex

programming problem with convergence rate o

(1/k2),” in Soviet Mathematics Doklady, vol. 27,

no. 2, 1983, pp. 372–376.

 [15] I. Sutskever, J. Martens, G. Dahl, and G.

Hinton, “On the importance of initialization and

momentum in deep learning,” in Proceedings of the

30th International Conference on Machine

Learning (ICML-13), 2013, pp. 1139–1147.

 [16] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev,

J. Long, R. Girshick, S. Guadarrama, and T.

Darrell, “Caffe: Convolutional architecture for fast

feature embedding,” arXiv preprint

arXiv:1408.5093, 2014.

Dogo Rangsang Research Journal UGC Care Group I Journal
ISSN: 2347-7180 Vol-12 Issue-02 2022

Copyright @ 2022 Authors

