
Dogo Rangsang Research Journal
ISSN: 2347-7180

UGC Care Group I Journal
Vol-12 Issue-02 2022

Page | 1 Copyright @ 2022 Authors

 NON RESTORING ALGORITHM FOR SQUARE ROOT

B.Sneha Priya1., A.Pravalika2., G.Akshitha3., L.Akshitha Reddy4 ., B.Sreeja5
1 Assistant Professor, Department of ECE., Malla Reddy College of Engineering for Women.,

Maisammaguda., Medchal., TS, India (budhasnehapriya@gmail.com)

2, 3, 4, 5 B.Tech ECE, (19RG1A04C5, 19RG1A04D7, 19RG1A04F3, 19RG1A04C9),
Malla Reddy College of Engineering for Women., Maisammaguda., Medchal., TS, India

Abstract

This article recommends a method for effectively using the

FPGA in a fully pipelined design by abstracting the algorithm

at the gate level using VHDL. Controlled subtract-multiplex

(CSM) is presented as a novel fundamental building

component. The suggested approach has the same basic idea as

the standard non-restoring algorithm, but it avoids the usage of

the add operation and appends 01 to the result instead. The

suggested method has been used effectively to develop FPGA

and provides a useful hardware resource.

Key words

square root, Field Programmable Gate Array (FPGA), non-

restoring, Gate Level

INTRODUCTION

Multimedia, data processing and control, and even

digital signal processing (DSP) techniques all rely

heavily on the square root function [1-6]. This issue

arises often in computational number theory and is a

traditional one for which an accurate solution is

difficult to get [7-8]. Rough estimation, the

Babylonian method, the exponential identity, the

Taylor-series expansion algorithm, the Newton-

Raphson method, the Sweeney-Robertson-Tocher

redundant method, the Sweeney-Robertson-Tocher

non redundant method, and the sequential algorithm

(the digit-by-digit method) are just some of the many

square root algorithms that have been studied,

developed, and implemented. The square root

operation in the aforementioned techniques is

performed in early processors using software, which

results in lengthy delays [6]. Hardware

implementation of the square root function gained

favour [6] as technology advanced to the point that

it became feasible to combine massive circuits on a

single chip, and as the need for quicker

computational execution time grew.

Unfortunately, the square root computation is not

simple to implement on field programmable array

(FPGA) technology due to the complexity of the

square root algorithms [1, 3, 5, 10]. Some square

root algorithms have been designed for use with

FPGA hardware. There are essentially two types of

them. Estimation techniques, such as the CORDIC,

DeLugish, and Chen methods, and the Newton-

Raphson approach fall under the first group, whereas

the second is known as the digit-by-digit method.

Finally, it's important to differentiate between

restoring and non-restoring algorithms when

classifying additional digit-by-digit methods. There

is a severe restriction on the restoring algorithm's

regular flow during the restoring stage. This is

primarily why it is no longer utilised, despite having

been the pioneering approach that inspired all the

others [11]. The non-restoring approach, which does

not restore the remainder, requires less hardware

resources to implement and is thus easier to

implement in hardware. It's optimised for FPGA

implementation and works well with IEEE rounding

standards [1-3, 6]. Multiple approaches or designs

have been developed to implement the non-restoring

digit-by-digit square root method on FPGA

hardware. A non-restoring approach, completely

pipelined and iterative, and requiring neither

multipliers nor multiplexors was presented by

Yamin and Waning [1-2, 9]. As fundamental

components, they presented the carry save adder

(CSA) and the carry propagate adder (CPA).

A SYSTEM FOR COMPUTING BY

DIGITS

Each digit of the square root is located in a sequence

in which one digit is created at each iteration in the

digit-by-digit computation technique [2, 6, 13].

There are a number of benefits to this method,

including the fact that the algorithm can be used with

any number base, the fact that once the root has been

found, all of its digits are correct and won't need to

be changed, and the fact that if the square root needs

to grow, the process will end once the last digit has

been found (of course the process depends on

number base). There are two main types of

algorithms in this category; those that restore data

and those that don't [6, 7]. The restoring algorithm's

process is consisting of the steps of taking the

current remainder, shifting it by one, adding one,

and removing the resulting square root. The 1 in 01

is a new guess bit, while the 0 represents a

multiplication by 2. If the resultant remaining is

positive, the newly created root bit is 1, and if it is

Dogo Rangsang Research Journal
ISSN: 2347-7180

UGC Care Group I Journal
Vol-12 Issue-02 2022

Page | 2 Copyright @ 2022 Authors

negative, the remainder must be restored by adding

the amount just deducted. In contrast, if the outcome

of a subtraction operation is negative, the non-

restoring algorithm will not restore the subtraction.

Instead, it takes the current root and adds 11 to it

before moving on to the next iteration. If the excess

occurs during addition, the following cycle will

revert to subtraction [15]. The restoring and non-

restoring algorithms in Figure 1 (a) and (b) use the

binary square root of 01011101 (corresponding with

93 decimal) as an example.

Figure 1. The example of digit-by-digit calculation to solve

square root: (a) restoring algorithm; (b) non-restoring

algorithm

CONCEIVED SQUARE-ROOT

ALGORITHM

Figure 2 depicts a little deviation from the typical

non-restoring digit-by-digit technique presented in

Figure 1(b) that may be used to achieve easier

implementation and quicker computation. To make

this adjustment, the add operation and append 11

have been removed, leaving just the subtract

operation and append 01 in use.

Figure 2. The example of using modified non-restoring digit-

by-digit calculation algorithm to solve square root

By removing unnecessary components, Samavi et al.

[6] have enhanced the performance of the basic non-

restoring digit-by-digit square root circuit. The non-

restoring, low-area circuit that they use. But its

fundamental building blocks remain the addition and

subtraction of numbers with a constant digit of 01 or

11. (still refer to Figure 1 b). In this work, we

provide a less complex option that requires just a

subtraction operation and the addition of 01. As a

result, the subtract-multiplex serves as the

fundamental building component (refer to Figure 2).

Illustration of the suggested algorithm's core

concept.

Figure 3. The principle of proposed algorithm to solve square

root

A simple hardware implementation of the proposed

non-restoring digit-by-digit algorithm for unsigned

6-bit square root by an array structure is shown in

Figure 4. The radicand is P (P5,P4,P3,P2,P1,P0), U

(U2,U1,U0) as quotient and R (R4,R3,R2,R1,R0) as

Dogo Rangsang Research Journal
ISSN: 2347-7180

UGC Care Group I Journal
Vol-12 Issue-02 2022

Page | 3 Copyright @ 2022 Authors

remainder. It can be shown that the implementation

needs 3 stage pipelines. The

basic building blocks of the array are blocks called

as controlled subtract-multiplex (CSM). Figure 5

present the details of a CSM. Input of the building

block is x,y,b and u, and as an output is bo(borrow)

and d result). If u=0, then d<=x-y-b else d<=x

Figure 4. A simple hardware implementation of the non-

restoring digit-by-digit algorithm for unsigned 6-bit square root

Figure 5. Internal structure of a CSM block

Figure 6. A simple hardware implementation of the non-

restoring digit-by-digit algorithm for unsigned n-bit square root

The generalization of simple implementation of the

non-restoring digit-by-digit algorithm for unsigned

n-bit square root by an array structure is shown in

Figure 6. Each row (stage) of the circuit in Figure 6

executes one-iteration of the non-restoring digit-by-

digit square root algorithm, where it only uses

subtracts operation and appends 01. To optimize

hardware resource utilization of the implementation

above, specialized entities can be created as building

block components. It will eliminate circuitry that is

not needed. As example, the implementation in

Figure 6 for unsigned 6-bit square root can be

optimized become as shown in Figure 7. The

specialized entities A, B, C, D and E are minimized

CSM when input ybu=100, yu=00, u=0, yu=10, and

y=0 respectively, and the remainder is ignored. The

generalization of optimized simple implementation

of the non-restoring digit-by-digit algorithm for

unsigned n-bit square root is shown in Figure 8.

Figure 7. Optimized simple hardware implementation of the

non-restoring digit-by-digit algorithm for unsigned 6-bit square

root

figure 8. Optimized simple hardware implementation of the

non-restoring digit-by-digit algorithm for unsigned n-bit

square root

THE IMPLEMENTATION OF THE

NON-RESTORING SQUARE ROOT

ALGORITHM IN GATE LEVEL

The implementation of the proposed non restoring

square root algorithm in gate level approach is

conducted in VHDL language. The VHDL source

Dogo Rangsang Research Journal
ISSN: 2347-7180

UGC Care Group I Journal
Vol-12 Issue-02 2022

Page | 4 Copyright @ 2022 Authors

codes for modules A, B, C, D, E, F and CSM is

shown in Figure 9, 10, 11, 12, 13, 14 and 15

respectively

Figure 9. Source code for module A

Figure 10. Source code for module B

Figure 11. Source code for module C

Figure 12. Source code for module D

RESULTS AND ANALYSIS

An efficient, low-overhead hardware

implementation of the non-restoring digit-by-digit

technique for square root was described before.

Here, we provide the above-mentioned method's

simulated results for 32-bit and 64-bit square root on

the Altera APEX 20KE FPGA in Figure 18. P is the

radicand and U is the quotient in this hypothetical

situation. The findings confirmed the success of the

deployment. As shown in the compilation report,

256 and 1023 logic elements (LE) are required to

implement 32-bit and 64-bit square root utilising the

optimised simple hardware implementation

approach of the non-restoring digit-by-digit

algorithm on an Altera FPGA APEX 20KE. Table 1

displays a comparison of the outcomes achieved

using various implementation methods. This table

compares the use of LEs and LCs, based on the

research found in sources [6] and [16]. It has shown

to be quite useful in terms of lowering the amount of

hardware resources needed to perform a given task.

This is because, as seen in Figure 8, we have adopted

a completely pipelined design and simplified CSM.

Dogo Rangsang Research Journal
ISSN: 2347-7180

UGC Care Group I Journal
Vol-12 Issue-02 2022

Page | 5 Copyright @ 2022 Authors

Figure 18. Simulation result of n-bit square root

using optimized simple hardware implementation

method of the non-restoring digit-by-digit

algorithm: (a) 32-bit in decimal display, (b) 32-bit in

binary display, (c) 64-bit in decimal display, (d) 64-

bit in binary display.

 TABLE 1. THE COMPARISON OF LOGIC

ELEMENT USAGE

TABLE 2. THE LIST OF LC/LE USAGE

USING VARIOUS ALTERA FPGA FAMILIES

Many different FPGA families are tested in an effort

to implement the suggested method. The tally of

LC/LE applications is shown in Table 2. The

"hardware resource" (LE) size of an implemented

circuit is proportional to the number of LE used. It

was shown that the suggested strategy makes the

best use of available hardware. This is

understandable given that it has a completely

pipelined design and only makes use of the subtract

operation and append 01 (instead of the add

operation and append 11). The findings show that

the suggested method is simple to implement,

requires less resources, and can be scaled to address

more complex square root problems in FPGA

implementation.

CONCLUSION

This work offered an adaptation of the standard non-

restoring digit-by-digit computation approach for

use with fully pipelined FPGA hardware. The

suggested technique relies on a two-bit shifter and a

subtractor-multiplexer, with the subtract operation

and append 01 replacing the add operation and

append 11. FPGA-based unsigned 32-bit and 64-bit

binary square root has been successfully

implemented using the suggested technique.

Comparing the suggested technique to previous

studies, the findings reveal that it makes the best use

of hardware resources. To address the challenging

square root issue in FPGA implementation, the

technique may be simply scaled to a bigger number.

REFERENCES

[1] L. Yamin and C. Wanming, "Implementation of Single

Precision Floating Point Square Root on FPGAs," in IEEE

Symposium on FPGA for Custom Computing Machines, Napa,

California, USA, 1997, pp. 226-232.

[2] L. Yamin and C. Wanming, "Parallel-array

implementations of a non-restoring square root algorithm," in

Computer Design: VLSI in Computers and Processors, 1997.

ICCD '97. Proceedings., 1997 IEEE International Conference

on, 1997, pp. 690-695.

[3] K. Piromsopa, et al., "An FPGA Implementation of a fixed-

point square root operation," presented at the Int. Symp. on

Communications and Information Technology (ISCIT 2001),

ChiangMai, Thailand, 2001.

 [4] D. R. Llamocca-Obregon, "A Core Design to Obtain Square

Root Based on a Non-Restoring Algorithm," presented at the

IBERCHIPS Workhsop, Salvador Bahia, Brazil, 2005.

 [5] XiaojunWang, "Variable Precision Floating-Point Divide

and Square Root for Efficient FPGA Implementation of Image

and Signal Processing Algorithms," Doctor of Philosophy,

Electrical and Computer Engineering, Northeastern University,

Boston, Massachusetts, 2007.

 [6] S. Samavi, et al., "Modular array structure for non-

restoring square root circuit," Journal of Systems Architecture,

vol. 54, pp. 957-966, 2008.

[7] H. Dong-Guk, et al., "Improved Computation of Square

Roots in Specific Finite Fields," Computers, IEEE

Transactions on, vol. 58, pp. 188-196, 2009.

 [8] S. Lachowicz and H. J. Pfleiderer, "Fast Evaluation of the

Square Root and Other Nonlinear Functions in FPGA," in

Electronic Design, Test and Applications, 2008. DELTA 2008.

4th IEEE International Symposium on, 2008, pp. 474-477.

[9] W. Chu; and Y. Li;, "Cost/Performance Tradeoff of n-Select

Square Root Implementations," in 5th Australasian Computer

Architecture Conference (ACAC 2000), Canberra, ACT 2000,

pp. 9-16.

Dogo Rangsang Research Journal
ISSN: 2347-7180

UGC Care Group I Journal
Vol-12 Issue-02 2022

Page | 6 Copyright @ 2022 Authors

 [10] J. Xiaoliang, "Implementation of Square Root Arithmetic

Based on FPGA," Modern Electronics Technique, vol. 30,

2007.

 [11] P. Montuschi and M. Mezzalama, "Survey of square

rooting algorithms," in Computers and Digital Techniques,

IEE Proceedings E, Italy, 1990, pp. 31 - 40.

[12] A. J. Thakkar and A. Ejnioui, "Design and implementation

of double precision floating point division and square root on

FPGAs," in Aerospace Conference, 2006 IEEE, 2006, p. 7 pp.

[13] W. Xiumin, et al., "A New Algorithm for Designing Square

Root Calculators Based on FPGA with Pipeline Technology,"

in Hybrid Intelligent Systems, 2009. HIS '09. Ninth

International Conference on, 2009, pp. 99-102.

[14] G. Renxi, et al., "Hardware Implementation of a High

Speed Floating Point Multiplier Based on FPGA," in 4th

International Conference on Computer Science & Education,

Nanning, Guangxi, P.R.China, 2009.

[15] S. Dattalo. (2000, March 17, 2010). Square Root Theory.

Available: http://www.dattalo.com/technical/theory/sqrt.html

[16] March 30, 2010). Comparing Altera APEX 20KE & Xilinx

Virtex-E Logic Densities. Available:

http://www.altera.com/products/devices/apex/features/apx-

compdensi ty.html

http://www.dattalo.com/technical/theory/sqrt.html

